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Abstract: This study aims to explore new therapeutic opportunities for 
histone deacetylase (HDAC) inhibitors by leveraging drug repurposing 
approaches and analyzing their bioactivity and molecular fingerprints. 
The methodology includes investigating drug repurposing opportunities 
for HDAC inhibitors, evaluating the bioactivity of repurposing drugs 
on HDAC enzymes, investigating the role of HDAC genes in 
therapeutic effects, and analyzing molecular fingerprints with 
explainable artificial intelligence (XAI) to identify structurally similar 
compounds with potential HDAC inhibitory activity. In this context, 
chemical compounds with IC50 (7903 compounds) and Inhibition 
(1084 compounds) standard types of HDAC genes reported to be 
associated with childhood acute leukemia were represented by molecular 
fingerprints. Regression and classification models were applied to the 
molecular fingerprints, and the results obtained were supported by 
XAI. All the study results were shared interactively on the website 
address https://iuysal1905-childhoodacuteleukemia-drug-interacito-
arayuz-r89zld.streamlit.app/ by designing a simulation environment. 
The influence of molecular fingerprints on the models and their impact 
on potential drug development in childhood acute leukemia were 
evaluated using XAI techniques, particularly through the analysis of 
SHAP values. The study contributes to the literature on the use of 
XAI technology in drug repurposing studies, especially in cancer, the 
study of molecular properties, and the active use of XAI in drug 
repurposing studies. 
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1. INTRODUCTION 

Leukemia is a type of cancer characterized by abnormal cell 
proliferation. It can be caused by various factors such as genetic 
predispositions, hereditary diseases, and environmental influences. Among 
childhood cancers, leukemia accounts for 30% of cases and is the most 
common malignant tumor. Approximately 98% of childhood leukemia cases 
consist of acute leukemias, namely Acute Lymphoblastic Leukemia (ALL) 
and Acute Myeloid Leukemia (AML), which vary based on the type of cells 
involved. ALL, being the most common form, is characterized by the 
uncontrolled growth of undeveloped lymphoid cells in the bone marrow, 
peripheral blood, and various organs. This leads to a reduced capacity of the 
bone marrow to produce sufficient mature red blood cells, platelets, and 
neutrophils. Leukemia often presents with a range of typical symptoms such 
as tiredness, elevated body temperature, excessive perspiration during sleep, 
reduction in body weight, difficulty breathing, lightheadedness, heightened 
vulnerability to infections, bluish-purple skin discoloration (known as 
cyanosis), and indications of bleeding. In pediatric patients, the sole 
manifestation of discomfort could occasionally be limited to the extremities 
or joints (Akalın & Yumuşak, 2023; Bordbar et al., 2023; Carroll & Bhatla,  
2016; Demir, 2023). 

HDACs, also known as histone deacetylases, play a crucial role in 
gene regulation through the modification of histone proteins. By influencing 
chromatin structure and gene transcription, they participate in essential 
cellular functions, including cell cycle advancement, cellular differentiation, 
and programmed cell death (apoptosis). Abnormalities in HDAC function 
have been associated with various human diseases, including cancer. In the 
case of childhood acute leukemia, there is evidence of dysregulated HDAC 
activity and expression, suggesting their role in the development of leukemia. 
Understanding the specific mechanisms through which HDACs contribute 
to leukemia can provide valuable insights into potential targets for 
therapeutic interventions (Eyal et al., 2005; Thotala et al. 2015). 

Artificial intelligence (AI) has made significant advancements in 
various fields, including healthcare and cancer research. However, traditional 
machine learning models often lack interpretability, which hinders our 
understanding of the underlying biological mechanisms and limits their 
practical use. Explainable AI (XAI) techniques have emerged as a solution to 
this problem, providing interpretable models that offer transparency and 
comprehensibility. In the field of cancer research, XAI plays a crucial role in 
unraveling the intricate interactions between genetic and epigenetic factors. 
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It facilitates the identification of new biomarkers and therapeutic targets, 
shedding light on the complex nature of cancer. XAI is also instrumental in 
drug discovery and repurposing efforts within the field of medicinal 
chemistry, as it enhances the interpretation and reliability of drug effects. By 
leveraging XAI, researchers can establish meaningful connections between 
biological effects and physicochemical factors, enabling the development of 
accurate and relevant models. The ultimate goal of XAI is to uncover the 
inner workings of the drug discovery process, shed light on how it is 
executed, and provide valuable insights related to this information 
(Christoph, 2020). 

Drug repurposing involves investigating the potential use of existing 
drugs for new therapeutic purposes, specifically in the case of HDAC 
inhibitors, which have shown promise as anticancer agents. The goal is to 
determine whether drugs approved for other conditions can also exhibit 
HDAC inhibitory activity. Assessing the bioactivity of repurposing drugs is 
crucial to understand their inhibitory potential on HDAC enzymes and their 
ability to modulate cancer-related processes like cell proliferation, 
differentiation, and apoptosis. Molecular fingerprints represent unique 
patterns or representations of chemical compounds based on their structural 
features and properties. Analyzing the molecular fingerprints of repurposed 
drugs allows researchers to compare them to known HDAC inhibitors and 
evaluate their structural similarities and potential interactions with HDAC 
enzymes. This analysis helps identify drugs that have the potential to target 
HDACs and exhibit the desired bioactivity. This study focuses on histone 
deacetylase genes associated with childhood acute leukemia and utilizes 
explainable artificial intelligence (XAI) to support molecular calculations. 
The study selects relevant genes from the Chembl database, filters molecules 
according to Lipinski rules, and determines the most suitable molecules 
using various artificial intelligence algorithms. By comparing the properties 
of the molecules and employing XAI technology, the study calculates the 
performance of models based on molecular fingerprints. Notably, this study 
stands out by conducting both regression and classification analyses on the 
molecules, contributing to the literature on molecular properties and the 
active use of XAI in cancer-focused drug repurposing studies. 

2. LITERATURE REVIEW 

In the literature review conducted considering the scope of this 
study, different publications under the titles of histone deacetylase, 
childhood acute leukaemia, chemical structure and bioactivity and drug 
repurposing were examined. In the studies in the literature, HDACs are an 
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interesting target in cancer treatment and show an altered expression in 
many cancers including haematological cancers, some HDAC genes are 
highly expressed in cancers such as childhood acute lymphoblastic leukaemia 
(ALL), HDAC inhibitors have emerged as promising drugs in cancer 
treatment, However, it has been stated that their use is limited due to their 
toxicity, that redesigning HDAC inhibitors has the potential to discover new 
treatment options, that they can be discovered by computational methods 
such as molecular docking and QSAR, and that redesigning existing drugs 
can be an effective way to discover new inhibitors. In this context, important 
studies that have had an impact on the establishment of the foundations and 
comparison processes of the thesis study can be summarised as follows: 

In a study conducted by Moreno et al. (2010), the mRNA expression 
patterns of HDAC genes were investigated in 94 samples of childhood acute 
lymphoblastic leukemia (ALL). It was observed that certain HDAC genes, 
namely HDAC2, HDAC3, HDAC8, HDAC6, and HDAC7, exhibited 
higher levels of expression in ALL samples compared to normal bone 
marrow samples. Moreover, specific subtypes of ALL, such as T-ALL or B-
cell ALL, displayed elevated expression levels of particular HDAC genes. 
Notably, increased expression of HDAC3 was found to be correlated with 
decreased overall survival in the patient group as a whole, as well as in T-
ALL patients specifically. Similarly, high expression of HDAC7 and HDAC9 
was also associated with lower survival rates. These findings indicate that 
HDAC7 and HDAC9 may serve as potential therapeutic targets and are 
indicative of poor prognosis in childhood ALL. 

Liu et al. (2020), investigated the use of drug repurposing, 
pharmacophore modelling, 3D-QSAR and docking studies to identify novel 
HDAC inhibitors. They aimed to discover new inhibitors that could be used 
to treat cancer and other diseases, and through their research they identified 
several potential HDAC inhibitors that had not been previously studied. 
They also noted that drug redesign can be an effective way to discover new 
inhibitors, as it allows the use of existing drugs that have already been tested 
for safety and efficacy. It therefore indicates the potential to use a 
combination of computational methods and drug redesign to identify new 
HDAC inhibitors, which could ultimately lead to the development of new 
treatments for cancer and other diseases. 

Gruhn et al. (2013), investigated histone deacetylase 4 (HDAC4) 
expression in childhood acute lymphoblastic leukaemia (ALL) and its 
potential association with clinical and biological features, and aimed to 
identify relevant HDAC isoforms for childhood ALL and determine their 
effects on response to treatment and prognosis. The study reported that 
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HDAC1, HDAC2 and HDAC8 showed significantly higher expression in 
ALL samples. In addition, high HDAC4 levels were associated with 
unfavourable prognostic factors and they suggested that HDAC4 may play a 
role in poor response to prednisone in childhood ALL. 

According to a recent study by Pacaud et al. (2023), the clinical 
applications of HDAC inhibitors have been extensively discussed. The 
authors highlighted the development of various HDAC inhibitors with 
distinct structures and functions, aiming to reverse abnormal epigenetic 
changes observed in cancer cells. The growing body of literature provides 
sufficient preclinical evidence to explore these drugs in different cancer 
stages and contexts, either as standalone therapies or in combination with 
other agents, to effectively target haematological and solid tumor 
malignancies. Vorinostat (Zolinza), the first approved HDAC inhibitor, has 
demonstrated success in treating patients with cutaneous T-cell lymphoma 
and epilepsy. Moreover, HDAC inhibitors have shown promising potential 
in the treatment of non-cancerous conditions such as cystic fibrosis, spinal 
muscular atrophy, and human immunodeficiency virus infection. 

In a study conducted by Cortés-Ciriano et al. (2020), the 
effectiveness of QSAR-derived affinity fingerprints (QAFFP) in predicting 
potency was investigated. They proposed a method for calculating QAFFP 
that allows compounds to be encoded and compared based on their 
similarity in bioactivity. The researchers compared the predictive ability of 
QAFFP using IC50 data from the ChEMBL database for different cancer 
cell lines and protein target datasets. The results showed that QAFFP was 
able to generate highly accurate models, with RMSE values ranging from 
approximately 0.6 to 0.9 pIC50 units. These values were similar to the 
uncertainty observed in the heterogeneous IC50 data in ChEMBL. 
Moreover, QAFFP performed comparably to Morgan2 fingerprints and 
physicochemical descriptors in terms of predictive power. These findings 
demonstrate that QAFFP is highly effective in tasks such as similarity 
search, composite classification, and scaffold jumping. 

Kirboga et al. (2022) focused on the application of artificial 
intelligence techniques to investigate potential therapeutic options for 
hereditary Friedreich's Ataxia (FA). The study specifically investigated iron 
chelation molecules and HDAC inhibitors as potential treatments for FA. A 
quantitative structure-activity relationship (QSAR) analysis was performed 
using compounds from the Chembl database. The bioactivity of 436 
compounds for Fe chelation and 1,163 compounds for HDAC inhibition 
was measured using IC50 units. Random Forest technique was used for 
model building. The models built using PubChem fingerprinting 
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outperformed the others, demonstrating its suitability for interpretation. The 
study highlighted the importance of nitrogen-containing functional groups 
and aromatic rings in the compounds analysed by XAI. 

3. METHODOLOGY 

Various studies have demonstrated the frequent occurrence of 
HDAC mutations and abnormal gene expressions in different cancer types 
and haematological malignancies. Specifically, in bone marrow samples of 
childhood acute lymphoblastic leukemia (ALL), elevated expressions of 
HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, and HDAC8 genes have 
been observed compared to healthy children's bone marrow samples 
(Klimek et al., 2008; Cress & Seto, 2000; Bali et al., 2018). 

In this particular study, genes ranging from HDAC1 to HDAC11 
were included, and the findings retrieved from the Chembl database are 
presented in Figure 3.1. This data provides insights into the expression levels 
of HDAC genes relevant to childhood ALL, highlighting their potential 
involvement in the disease. 

 

 

Figure 3.1. HDAC genes 
Author’s own conception 

The dataset utilized in this study was sourced from the ChEMBL 
version 29 database, which specifically caters to HDAC-related information. 
To enhance the quality of the data, compounds exhibiting IC50 and 
Inhibition values were selected as the bioactivity units of interest. 
Consequently, a dataset comprising 7,903 compounds for IC50 and 1,084 
compounds for Inhibition was compiled. In order to construct a 
classification model for HDAC, specific thresholds of <1 µM and >10 µM 
were established to distinguish between active and inactive compounds, 
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aligning with the intended target. To uniquely represent the compounds, 
molecular fingerprint identifiers were generated using SMILES indicators, 
which encode the structural information of the molecules. 

3.1. Lipinski Rules 

In drug discovery, three commonly used rules are employed to assess 
the characteristics and similarities of potential drug candidates: Lipinski's 
rule, Veber's rule, and Ghose's rule. Among these, Lipinski's rule is widely 
recognized and preferred. It takes into account key physicochemical 
properties, such as lipophilicity and water solubility, to evaluate the potential 
similarity of a compound to a drug. Lipinski's rule serves as a valuable 
guideline for assessing drug candidates by considering factors such as cellular 
permeability and pharmacokinetic properties.  

Lipinski's rule of five outlines specific criteria that a molecule must 
meet to be considered a potential drug candidate (Lipinski, 2004): 

• Molecular weight ≤ 500 g/mol 
• Lipophilicity coefficient (LogP) ≤ 5 
• No more than five hydrogen bond donors 
• No more than ten hydrogen bond acceptors 
• Molar refractive values between 4 and 130. 

The molecular weight of a compound is important in determining its 
permeability, as lower molecular weight compounds tend to exhibit higher 
oral activity. Lipophilicity, as measured by the logP value, is closely 
associated with drug absorption. An increased number of hydrogen bond 
donor groups in a compound can impede its penetration through cell 
membranes. Similarly, a higher number of hydrogen bond acceptors also 
impacts permeability. These properties play a significant role in drug 
discovery and the bioavailability of potential drug candidates. Adhering to 
these rules aids in evaluating the properties of potential drug candidates and 
optimizing their pharmacokinetic characteristics to enhance their biological 
activity. 

3.2. Explainable Artificial Intelligence 

Explainable AI (XAI) plays a vital role in accurately interpreting 
artificial intelligence models. Its purpose is to enhance transparency in the 
decision-making processes and ensure reliable predictions by providing 
explanations for the models' outcomes (Murdoch et al. 2019; Doshi-Velez & 
Kim, 2017; Lapuschkin et al., 2019; Miller, 2019). 

Shapley values are utilized to determine the relative importance of 
features in predictive models, comprehend feature interactions, and explain 
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model predictions. These values serve as a valuable tool in identifying which 
attributes are associated with changes in model outputs. Furthermore, 
Shapley values can be applied in various contexts, including assessing model 
fairness and detecting attribute-based unfairness or discrimination 
(Lundberg & Lee, 2017; Lundberg et al. 2020; Kumar et al., 2020). 

3.3. Chembl Database 

Chembl is a comprehensive database that houses a wide range of 
chemical and biological information, including bioactivity data, chemical 
structures, drug targets, drug discovery projects, and pharmacological 
profiles of drug molecules. It encompasses data on compound activities in 
bioassays, their interactions with target molecules, and quantitative 
assessments of these interactions (Gaulton et al., 2017). Notably, the data in 
Chembl is sourced from scientific literature, which ensures its reliability and 
can be cross-referenced for verification. The database also incorporates drug 
efficacy data that is linked to published articles, further bolstering its 
credibility. Given these advantageous features, the Chembl database was 
selected as the data source for this study. 

3.4. Artificial Intelligence Models and Python Libraries 

Regression is a supervised learning technique employed in machine 
learning to predict continuous numerical values. It involves establishing a 
relationship between input variables (features) and the corresponding output 
variable (target) by fitting a mathematical function to the data. The objective 
is to create a model that can accurately forecast the continuous value of the 
target variable based on the provided input characteristics. There are several 
regression algorithms commonly used in data analysis, including linear 
regression, polynomial regression, support vector regression (SVR), decision 
tree regression, and random forest regression. To evaluate the effectiveness 
of these regression models, various metrics are employed, such as root mean 
squared error (RMSE), R-square (coefficient of determination), and adjusted 
R-square. These metrics provide insights into how well the models fit the 
data and predict the target variable (Bishop & Nasrabadi, 2006; Géron, 2022; 
Hastie et al., 2009). 

Classification, on the other hand, is a supervised learning technique 
used to predict the categorical class or label of an input data point. It 
involves mapping input features to predefined output classes. The goal is to 
construct a model that can accurately assign new data points to their 
respective classes based on patterns and relationships learned from training 
data. Classification models often utilize various algorithms such as logistic 
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regression, support vector machines (SVM), decision trees, random forests, 
and neural networks (including deep learning models). When evaluating the 
performance of these models, metrics such as accuracy, F1-score, and the 
area under the receiver operating characteristic curve (ROC-AUC) are 
commonly employed (Murphy, 2012; Bishop & Nasrabadi, 2006; Géron, 
2022; Hastie, 2009). 

The study employed several Python libraries, including pandas for 
data analysis, numpy for calculations, rdkit for molecular modeling, 
matplotlib and seaborn for visualization, eli5 for interpreting models, lazy 
predict for assessing the performance metrics of models collectively, and 
stream lit packages for developing an interactive web application. 

4. RESULTS 

Figure 4.1 presents the calculated activity states, SMILES 
representations, pIC50 values, and Lipinski properties (molecular weight, 
lipophilicity, number of hydrogen bond donors, and number of hydrogen 
bond acceptors) of the molecules under investigation. The activity states 
indicate whether the molecules are active, inactive, or have an intermediate 
value. The pIC50 values represent the negative logarithmic scale of the IC50 
data, providing a more uniform distribution for the IC50 values. 
Additionally, the Lipinski properties provide important information about 
the molecular characteristics of the compounds. The molecular weight (MW) 
reflects the size of the molecule, while lipophilicity (LogP) indicates the 
compound's affinity for lipid or water environments. The number of 
hydrogen bond donors (NumHDonors) and hydrogen bond acceptors 
(NumHAcceptors) provide insights into the compound's potential for 
forming hydrogen bonds. By examining these properties, researchers can 
gain a better understanding of the molecular features and potential drug-like 
properties of the compounds. 
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Figure 4.1. SMILES, pIC50 and Lipinksi Values of Molecules. A) IC50, B) Inhibition 
Author’s own conception 

Figure 4.2 presents the calculated base values of the molecules based 
on Lipinski's rules. Lipinski's rules are widely used in drug discovery to 
assess the drug-likeness and potential for oral bioavailability of compounds. 
These rules consider several physicochemical properties of the molecules, 
including molecular weight, lipophilicity (LogP), number of hydrogen bond 
donors, and number of hydrogen bond acceptors. Comparing the base 
values of the molecules according to Lipinski's rules allows researchers to 
evaluate their compliance with the criteria for drug-likeness. For example, if 
the molecular weight is below 500 g/mol, LogP is less than or equal to 5, 
and the number of hydrogen bond donors and acceptors is within the 
specified limits, the molecule is considered more likely to have favourable 
pharmacokinetic properties. Analyzing the structure and properties of the 
compounds using chemo informatics methods, such as those provided by 
the Rdkit library in Python, enables researchers to gain insights into their 
drug-like characteristics and potential for effective and safe use. Additionally, 
considering the ADME processes, which include absorption, distribution, 
metabolism, and elimination, helps evaluate the bioavailability of the drug 
candidate. Molecular flexibility and hydrogen bond count are important 
factors in assessing the ADME properties and overall drug efficacy. 
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(Landrum, 2016; Lipinski et al., 2012; Veber et al., 2002). By examining the 
base values of the molecules and assessing their compliance with Lipinski's 
rules, researchers can make informed decisions about the potential drug-
likeness and bioavailability of the compounds.  

 

 

Figure 4.2. Molecule analysis A) Activity status, B) LogP and Molecule Weight (MW), C) 
PIC50 and Bioactivity, D) MW and Bioactivity 

Author’s own conception 

Figure 4.3 presents the model performance metrics obtained using 
the Lazypredict package for the binary matrix created based on the 
molecular fingerprints of the molecules. The metrics used to evaluate the 
models include R2 (coefficient of determination), Adjusted R2, and Root 
Mean Squared Error (RMSE). These metrics provide insights into the 
accuracy and reliability of the models in predicting the target variable. 
According to the results in Figure 4.3, the decision tree regressor model has 
demonstrated the highest performance among the evaluated models for both 
standard types (IC50 and Inhibition). The decision tree algorithm is a non-
parametric supervised learning technique that can capture complex 
interactions between features and provide interpretable results. Its ability to 
handle both numerical and categorical data, as well as its capacity to capture 
non-linear relationships, makes it well-suited for modeling the relationship 
between molecular fingerprints and drug-like properties. The choice of the 
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decision tree regressor model as the most successful model suggests that it is 
capable of accurately predicting the target variable based on the molecular 
fingerprints and capturing the underlying patterns and relationships within 
the data (Hochreiter et al., 2018; David et al., 2020).  

 

 

Figure 4.3. Comparison of RMSE values of the models 
Author’s own conception 

Figure 4.4 provides a comparison of the R-squared (R2) values 
obtained from the different models for both standard types (IC50 and 
Inhibition). R-squared is a statistical metric that quantifies the amount of the 
target variable's variation that can be explained by the independent variables. 
It is commonly used to assess the goodness of fit of regression models, 
indicating how well the model captures the variability in the data. According 
to the results in Figure 4.4, the decision tree regressor model has consistently 
achieved the highest R-squared values among all the evaluated models for 
both standard types. This indicates that the high R-squared values obtained 
by the decision tree regressor model suggest that it can effectively capture 
the underlying relationships between the molecular fingerprints and the 
drug-like properties.  
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Figure 4.4. Comparison of R-Squared values of the models 
Author’s own conception 

The comparison of the Adjusted R-Squared values of the models is 
given in Figure 4.5. According to this, the most successful model in both 
standard types has been the decision tree regressor. 
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Figure 4.5. Comparison of Adjusted R-Squared values of the models 
Author’s own conception 

Comparison of Absolute Error (AE), Relative Error (RE), Squared 
Error (SE) and Root Mean Squared Error (RMSE) metrics of the models 
was performed with Rapidminer software and given in Figure 4.6. 
Accordingly, the most successful model was the Gradient Boosted Trees 
model. 
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Figure 4.6. Comparison of AE, SE, RE, RMSE values of the models with Rapidminer (IC50 
on the left, Inhibition on the right) 

A visualisation of the time taken to calculate the performance 
metrics of the models is given in Figure 4.7. It is noteworthy that the 
Quantile Regressor model is the most time-consuming model when 
calculating performance metrics for both IC50 and Inhibition. It is 
important that Decision Tree Regressor and Extra Tree Regressor, which are 
the most successful models in performance metrics, are also among the most 
successful models in time taken. 
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Figure 4.7. Time Taken of models 
Author’s own conception 

By selecting the Decision Tree Regressor model, a training set 
regression visualisation was created as shown in Figure 4.8. 

 

 

Figure 4.8. Regression graph of the Decision Tree Regressor model 
Author’s own conception 

The values in the Smiles column were converted into molecule 
objects using the rdkit.Chem and rdkit.Chem.Draw modules and the 
Chem.MolFromSmiles function. The first 20 molecule structures were 
visualised with the MolsToGridImage function and given in Appendix 1. 
Then, the calculated morgan fingerprints values of the molecules were 
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combined with the values labelled as 1 and 0 according to the activity status 
in the label column and the resulting data set was divided into training and 
test sets. A model was created on the training set with Random Forest 
Classifier and the predictions of the model were calculated with the test data. 
The performance of the classification model was calculated with the ROC 
curve and a high success was obtained with a value of 0.9725. 

The compounds in the data set were labelled as "active" and 
"inactive". Then, according to these labels, the compounds were classified 
according to their label values. Chemical structures in Smiles format were 
represented using Morgan Fingerprints, known as chemical fingerprints. A 
chemical fingerprint is a numerical vector used to represent the properties of 
chemical compounds. In this way, they are converted into a form that can be 
processed by machine learning algorithms. In order to evaluate the true and 
predicted classes of the model, the Confusion Matrix class from the Pycm 
library was used to calculate the complexity matrix between the true labels 
and the predicted labels and visualised with a heatmap in Figure 4.9. 
Accordingly, the number of instances where the true positive class was 
correctly predicted as positive was 3196, the number of instances where the 
true negative class was incorrectly predicted as positive was 32, the number 
of instances where the true positive class was incorrectly predicted as 
negative was 14 and the number of instances where the true negative class 
was correctly predicted as negative was 600. 
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Figure 4.9. Confusion Matrix 
Author’s own conception 

In order to see the performance of the model more clearly as a result 
of the classification, some metrics were evaluated. The values of these 
metrics are given in Appendix-2 and Appendix-3. According to the 
performance metrics, high performance is obtained for both classes (0 and 
1). The ACC (Accuracy) value is approximately 98.8% for both class 0 and 
class 1, i.e., the proportion of correctly classified samples is quite high. The 
AUC (Area under the ROC curve) and AUPR (Area under the PR curve) 
values were calculated as approximately 0.97 for both classes. This shows 
that the classification ability of the model is high. The F1 score, which is the 
harmonic mean of precision and recall measurements, has high values for 
both classes. The F1 score was calculated as 0.96 for class 0 and 0.99 for 
class 1. The false positive rate (FPR) and false negative rate (FNR) are also 
low for both classes. This shows that the model minimises both false 
positive classifications and false negative classifications. In general, it is seen 
that the model has high accuracy, precision and specificity values as a result 
of the given metrics. Comparison of Accuracy, F1 Score and ROC-AUC 
values of models is given in Figure 4.10. Accordingly, the most successful 
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models were Extra Trees Classifier, Extra Tree Classifier, Random Forest 
Classifier and Decision Tree Classifier. 

 

 

Figure 4.10. Comparison of Accuracy, F1 Score and ROC-AUC values of models 
Author’s own conception 

5. CONCLUSIONS 

In this study, virtual screening of histone deacetylase genes for 
childhood acute leukemia, which molecular fingerprints these genes have 
and the contribution of these molecular fingerprints to the discovery of 
histone deacetylase genes IC50 and Inhibition standard types have been 
determined. After determining the current status of the molecular 
fingerprints, the explainable artificial intelligence method was applied to 
determine the importance of the molecular features. After the virtual 
screening of the molecular properties of the candidate molecules, the most 
appropriate model over the binary matrix containing the information of the 
molecular fingerprints has been determined using Decision Tree Regressor. 
In order to apply an explainable artificial intelligence method on this model, 
it is necessary to calculate the effect of each molecular fingerprint on the 
models. For this reason, Shap values of each feature have been calculated 
and its effect on the models has been observed. In order to see the effects of 
molecular features on the models, different types of graphics have been 
used.  
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Waterfall plots show step-by-step changes in an initial value (usually 
a baseline or mean value). At each step, a feature contribution is added or 
subtracted from the total value. In this way, the total contribution of the 
features is determined. The visualisation designed to determine the effect of 
each molecular fingerprint on the predictions is given in Figure 5.1. 

 

 

Figure 5.1. SHAP Waterfall graphics 
Author’s own conception 

The lower section of the waterfall plot begins with the predicted 
output value of the model, denoted as E[f(X)]. Each row illustrates the 
directional shift, either positive (indicated by red) or negative (indicated by 
blue), caused by the contribution of each feature from the expected output 
value to the model's final output value. According to the results, the 
expected model output value for IC50 was 6.129 while the current model 
output value was 4. The expected model output value for inhibition was 
7.465 while the current model output value was 7.301. The grey numbers in 
front of the feature names represent the value of each feature in this 
example. Cases where the features have a value of 1 are expressed as present 
and cases where they have a value of 0 are expressed as absent. 

In the analysis of molecular properties, certain substructures called 
PubchemFP335 and PubchemFP666 were found to have a positive effect on 
the model's output. Specifically, PubchemFP335 represents a substructure 
indicating the presence of three carbon atoms and one hydrogen atom 
around a carbon atom. This substructure suggests that the atoms 
surrounding aromatic bonds have less significance, and their effect ratio on 
the model's output is +0.13. On the other hand, PubChemFP392, 
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representing a different substructure, contributed -0.62 to the model's 
prediction, indicating that it is not suitable as a drug candidate for childhood 
acute leukemia. Other molecules in the dataset also had varying 
contributions, with some positively affecting the model's prediction and 
others negatively affecting it. For example, the presence of oxygen atoms, as 
represented by PubChemFP19, had a negative impact, while a specific 
carbon-oxygen bond represented by PubChemFP666 had a positive effect 
on the model's prediction. In the analysis of molecular properties, several 
substructures represented by PubchemFP385, PubChemFP185, 
PubChemFP517, PubChemFP717, PubChemFP403, PubChemFP37, 
PubChemFP115, PubChemFP181, and PubChemFP684 were evaluated for 
their contribution to the model's output. PubchemFP385, representing a 
structure with three bonds of one carbon atom, had a negative contribution 
(-0.35) to the model, suggesting that its presence may reduce drug potential 
or have a negative effect on the target molecule. Similarly, PubChemFP185, 
representing a structure with at least two rings of size 6, also had a negative 
contribution (-0.15) to the model. On the other hand, PubChemFP517, 
representing a carbon atom bonded with nitrogen atoms, and 
PubChemFP717, representing a benzene ring with a chlorine atom, had 
positive contributions (+0.11 and +0.08, respectively), indicating that their 
presence may increase the drug potential or have a favorable effect on the 
target molecule. Other substructures, such as PubChemFP403, 
PubChemFP37, PubChemFP115, PubChemFP181, and PubChemFP684, 
also had varying contributions to the model, suggesting their potential 
impact on the drug potential or effect on the target molecule. 

In conclusion, certain substructures, such as PubChemFP335 and 
PubChemFP666, were found to have a positive impact on the model's 
output. These substructures suggest the presence of specific molecular 
patterns that contribute positively to the drug potential for childhood acute 
leukemia (ALL). The positive contributions of these molecular fingerprints 
indicate that they have properties that are desirable for drug candidates 
targeting ALL. 

Bar graph representation, which is another type of graph, is given in 
Figure 5.2. Molecules that contribute to the model output in a slightly 
positive direction are shown in the graph. The bar graph also supports the 
results of the waterfall graph. Other graph types and all the results obtained 
were presented interactively to the users in the streamlit web application by 
developing a simulation environment. All results obtained from the study 
can be accessed at https://iuysal1905-childhoodacuteleukemia-drug-
interacito-arayuz-r89zld.streamlit.app/. 
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Figure 5.2. SHAP Bar graphics 
Author’s own conception 

The main aim of this research is to utilize artificial intelligence (AI) 
models that promote transparency and interpretability to broaden the range 
of therapeutic compounds available for treating childhood acute leukemia. 
Thus, it will facilitate the drug development and discovery process and 
ensure confidence in the results obtained. Incorporating explainable 
algorithms like SHAP is essential for enhancing trust and transparency in the 
use of machine learning models, enabling data-driven approaches in the 
development of drugs and chemicals. The study examines the significance of 
molecular fingerprints identified through the SHAP annotator as predictors 
for IC50 and Inhibition, which represent standard types of HDAC 
inhibitors, within the prediction model. 

In future investigations, it is advisable to examine SHAP plots to 
gain insights into long-term predictions and explore the SHAP properties of 
therapeutic trials and other contributing molecules that may impact HDAC 
inhibitors relevant to childhood acute leukemia. 

Explainable AI (XAI) offers a range of benefits in the field of drug 
discovery, including improved cost-effectiveness and time efficiency. 
However, it also presents certain challenges such as reduced model accuracy, 
conflicting molecular fingerprints, and the need for accurate threshold 
selection. It is expected that the integration of XAI and drug discovery 
studies will mutually reinforce each other through the dissemination of 
computational research, enhanced applicability through in vitro and in vivo 
experiments, and hold significant promise for future investigations into drug 
development. 
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APPENDIX 1 - Visualisation of Smiles molecular structures 
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APPENDIX 2 - Other performance metrics-1 

Metric Value 

95% CI (0.98459,0.99147) 

ACC Macro 98.803 

ARI 94.022 

AUNP 9.725 

AUNU 9.725 

Bangdiwala B 98.367 

Bennett S 97.605 

CBA 96.973 

CSI 95.615 

Chi-Squared 351.193.482 

Chi-Squared DF 1 

Conditional Entropy 8.137 

Cramer V 95.608 

Cross Entropy 64.508 

F1 Macro 97.797 

F1 Micro 98.803 

FNR Macro 275 

FNR Micro 1.197 

FPR Macro 275 

FPR Micro 1.197 

Gwet AC1 98.356 

Hamming Loss 1.197 

Joint Entropy 72.633 

KL Divergence 12 

Kappa 95.594 
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Kappa 95% CI (0.94328,0.9686) 

Kappa No Prevalence 97.605 

Kappa Standard Error 646 

Kappa Unbiased 95.594 

Krippendorff Alpha 95.594 

Lambda A 92.722 

Lambda B 92.508 

Mutual Information 55.249 

NIR 8.355 

NPV Macro 98.364 

NPV Micro 98.803 

Overall ACC 98.803 

Overall CEN 8.178 

Overall J (1.9146,0.9573) 

Overall MCC 95.608 

Overall MCEN 7.019 

Overall RACC 72.827 

Overall RACCU 72.828 

P-Value None 

PPV Macro 98.364 

PPV Micro 98.803 

Pearson C 69.106 

Phi-Squared 91.409 

RCI 85.663 

RR 1921.0 

Reference Entropy 64.496 

Response Entropy 63.386 
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SOA1(Landis & Koch) Almost Perfect 

SOA2(Fleiss) Excellent 

SOA3(Altman) Very Good 

SOA4(Cicchetti) Excellent 

SOA5(Cramer) Very Strong 

SOA6(Matthews) Very Strong 

SOA7(Lambda A) Very Strong 

SOA8(Lambda B) Very Strong 

SOA9(Krippendorff Alpha) High 

SOA10(Pearson C) Strong 

Scott PI 95.594 

Standard Error 175 

TNR Macro 9.725 

TNR Micro 98.803 

TPR Macro 9.725 

TPR Micro 98.803 

Zero-one Loss 46 

APPENDIX 3 Other performance metrics-2 

Metric Class 0 Class 1 

ACC(Accuracy) 98.803 98.803 

AGF(Adjusted F-score) 97.283 98.295 

AGM(Adjusted geometric mean) 98.288 969 

AM(Difference between automatic and manual 
classification) -18 18 

AUC(Area under the ROC curve) 9.725 9.725 

AUCI(AUC value interpretation) Excellent Excellent 

AUPR(Area under the PR curve) 96.328 99.286 
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BB(Braun-Blanquet similarity) 94.937 99.009 

BCD(Bray-Curtis dissimilarity) 234 234 

BM(Informedness or bookmaker informedness) 94.501 94.501 

CEN(Confusion entropy) 20.844 5.727 

DOR(Diagnostic odds ratio) 428.035.714 428.035.714 

DP(Discriminant power) 200.214 200.214 

DPI(Discriminant power interpretation) Fair Fair 

ERR(Error rate) 1.197 1.197 

F0.5(F0.5 score) 9.715 99.119 

F1(F1 score - harmonic mean of precision and 
sensitivity) 96.308 99.285 

F2(F2 score) 95.481 99.452 

FDR(False discovery rate) 228 991 

FN(False negative/miss/type 2 error) 32 14 

FNR(Miss rate or false negative rate) 5.063 436 

FOR(False omission rate) 991 228 

FP(False positive/type 1 error/false alarm) 14 32 

FPR(Fall-out or false positive rate) 436 5.063 

G(G-measure geometric mean of precision and 
sensitivity) 96.318 99.286 

GI(Gini index) 94.501 94.501 

GM(G-mean geometric mean of specificity and 
sensitivity) 97.223 97.223 

HD(Hamming distance) 46 46 

IBA(Index of balanced accuracy) 90.149 98.896 

ICSI(Individual classification success index) 92.657 98.573 

IS(Information score) 257.058 24.491 

J(Jaccard index) 92.879 98.581 

LS(Lift score) 5.9405 118.502 
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MCC(Matthews correlation coefficient) 95.608 95.608 

MCCI(Matthews correlation coefficient 
interpretation) Very Strong Very Strong 

MCEN(Modified confusion entropy) 33.456 9.969 

MK(Markedness) 96.729 0. 

APPENDIX 4 - Effect of FP molecules on the model and bit 
substructure 

FP Contribution to 
the model 

Bit Substructure 

PubChemFP392 -0.62 N(~C)(~C)(~H) 

PubChemFP374 -0.23 C(~H)(~H)(~H) 

PubChemFP19 -0.22 >= 2 O 

PubChemFP698 -0.19 O-C-C-C-C-C-C-C 

PubChemFP193 -0.16 >= 3 saturated or aromatic 
carbon-only ring size 6 

PubChemFP569 -0.15 N-C-C-N 

PubChemFP666 +0.13 C=C-C-O-C 

PubChemFP391 -0,13 N(~C)(~C)(~C) 

PubChemFP335 +0,13 C(~C)(~C)(~C)(~H) 

PubChemFP385 -0.35 C(:C)(:C)(:C) 

PubChemFP185 -0.15 >= 2 any ring size 6 

PubChemFP517 +0.11 N-N-C-N 

PubChemFP717 +0.08 Cc1ccc(Cl)cc1 

PubChemFP403 -0.06 N(:C)(:C) 

PubChemFP37 +0.06 >= 1 Cl 

PubChemFP115 +0.04 >= 1 any ring size 3 

PubChemFP181 -0.04 >= 1 saturated or aromatic 
heteroatom-containing ring size 6 

PubChemFP684 +0.03 O=C-C-C-C-C 

 


