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Abstract: Iron (Fe) chelating medicines and Histone deacetylase 
(HDAC) inhibitors are two therapy options for hereditary Friedreich's 
Ataxia that have been shown to improve clinical results (FA). Fe 
chelation molecules can minimize the quantity of stored Fe, and 
HDAC inhibitors can boost the expression of the Frataxin (FXN) 
gene in enhancing FA. A complete quantitative structure-activity 
relationship (QSAR) search of inhibitors from the ChEMBL 
database is reported in this paper, which includes 437 compounds for 
Fe chelation and 1,354 compounds for HDAC inhibitors. For further 
investigation, the IC50 was chosen as the unit of bioactivity, and 
following data refinement, a final dataset of 436 and 1,163 compounds 
for Fe chelation and HDAC inhibition, respectively, was produced. 
The Random Forest (RF) technique was used to generate models (train 
R2 score, 0.701 and 0.892; test R2 score 0.572 and 0.460, for Fe 
and HDAC, respectively). The models created using the PubChem 
fingerprint were the strongest of the 12 fingerprint kinds; hence that 
feature was chosen for interpretation. The results showed the importance 
of properties related to nitrogen-containing functional groups (SHAP 
value of PubchemFP656 is -0.29) and aromatic rings (SHAP value 
of PubchemFP12 is -0.16). As a result, we explained the effect of the 
molecular fingerprints on the models and the impact on possible drugs 
that can be developed for FA with artificial intelligence (XAI), which 
can be explained through SHAP (Shapley Additive Explanations) 
values. Model scripts and fingerprinting methods are also available at 
https://github.com/tissueandcells/XAI. 
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GRAPHICAL ABSTRACT 

 

Highlights 

• Friedreich's Ataxia (FA/FRDA) is one of the most widespread hereditary 
diseases with a wide range of symptoms and no definitive proven treatment. 

• Computational methods for the controlled and easy production of innovative 
chemical entities hold promise for drug discovery. 

• In defining target chemicals, the need for explicable deep learning models is 
increasing to increase humans' ability to interpret mathematical models. 

1. INTRODUCTION  

The process that reveals a therapeutically beneficial compound for 
use in curing and treating diseases is called drug discovery. It takes 
approximately 12-15 years from initial drug discovery to marketing. 
Therefore, the identification, synthesis, characterization, optimization, and 
determination of therapeutic efficacy values of such compounds is a very 
long and challenging process (Deore et al., 2019). To overcome this 
complexity, molecular fingerprints represent and compare molecular 
structures. In this process, the input data encoded with the SMILES 
(Simplified Molecular Input Line Entry Specification) information of the 
compounds can be used for training. Therefore, the relationship between 
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structure and biological, chemical, and physicochemical activities are 
revealed Staszak et al. (2021). 

In recent years, the increasing interest in computer-assisted drug 
discovery (CADD) has enabled drug discovery studies using artificial 
intelligence (AI).CADD applications include new compound design, de 
novo design, structure and ligand-based design, estimation of the 
physicochemical and pharmacokinetic properties of the drug, and machine 
learning algorithms for drug repurposing, Lavecchia (2015); Lo et al. (2018); 
Vamathevan et al. (2019).In addition to deep learning methods for 
predicting properties based on input data and determining nonlinear input-
output relationships, machine learning approaches based on molecular 
descriptors contribute to the synergy of drug discovery and 
cheminformatics, Xue & Bajorath (2000). Explainable artificial intelligence 
(XAI) aims to increase the intelligibility of models derived from input data 
and transform them into more human-interpretable formats. As AI is 
increasingly used in drug discovery and related fields, there is a growing 
demand for using XAI to interpret fundamental models. 

Additionally, to mathematical models, XAI can support the design of 
new drugs, the extraction of pharmacological activities from molecular 
structures, and the creation of new bioactive compounds with desired 
properties by providing ways to make the underlying decision-making 
process transparent, increase interpretability and avoid false predictions in 
the drug discovery process. XAI studies, which are at the beginning of the 
growth period, are progressing rapidly. The use of XAI studies in drug 
discovery and pharmacological studies is thought to increase in the coming 
years, Jiménez-Luna et al. (2020).Friedreich's ataxia (FRDA/FA) is a 
progressive and neurodegenerative genetic disorder that usually occurs 
between 10-15 years old. At the onset of FA, the first symptoms include 
unbalanced gait, frequent falls, and impaired movement coordination ability, 
Cook & Giunti (2017); Lew et al. (2020).The most prevalent inherited 
disease occurs with the expansion of the GAA triplet located in intron 1 of 
the Frataxin gene on chromosome 9q13,Alper & Narayanan (2003).There is 
a linear correlation between the expanded repeats size and the phenotypic 
severity of FA. Frataxin (FXN) protein (218 aa., 18 kDa), the protein of the 
frataxin gene, is a mitochondrial protein involved in Fe metabolism. FXN 
deficiency in FA, a nuclear-encoded mitochondrial disease, causes Fe 
accumulation in the mitochondria, disruption of mitochondrial enzymes, and 
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sensitivity to oxidative stress. Due to this sensitivity, free radical-mediated 
cell death occurs (Gottesfeld, 2019; Seznec et al., 2005; Wilson, 2006). 

Furthermore, FA patients may have variable clinical diseases such as 
heart disease, diabetes mellitus, and glucose intolerance. However, the 
pathogenesis of FA has not yet been resolved. Therefore, there is no current 
treatment method for FA. Bulteau et al. (2007) found that mitochondrial Fe 
has a primary key role in developing and advancing the disease in their 
studies on S. cerevisiae yeast. 

The clinical signs and symptoms associated with FA result from 
degenerative changes in the dorsal root ganglia. Nerve fibers in the spinal 
cord degenerate and cause a lack of signals to the cerebellum, which is 
responsible for voluntary movement coordination, Pandolfo (1999).FA 
causes decreased iron-sulfur cluster and heme formation, leading to Fe 
accumulation in mitochondria. When Boddaert et al. evaluated the reduction 
of Fe accumulation with appropriate iron chelators, they showed that 
chelators reduced Fe accumulation ( Boddaert et al., 2007). It is also known 
that Fe chelator agents such as deferiprone, Idebenone, and Desferoxamine 
are also effective in moderate Fe accumulation, Goncalves et al. (2008); 
Pandolfo & Hausmann (2013); Soriano et al. (2013).Another treatment 
modality based on research and clinical evidence is gene silencing of FXN 
alleles with extended repeats. This method involves a heterochromatin-
mediated mechanism that reverses FXN gene silencing by a histone 
deacetylase (HDAC) inhibitor. These molecules provide therapeutic benefits 
by acetylating lysine residues on histones H4 and H3 (Herman et al., 2006; 
Soragni et al., 2011).However, there is no current treatment method for FA 
since Fe chelator molecules are only effective in moderate Fe accumulation, 
and HDAC inhibitors (HDACi's) are either highly toxic or have low 
specificity. To discover new HDACi and Fe chelator molecules, we used the 
XAI method in this study to identify the critical features for discovering 
molecules and to address the main challenge for possible drug discovery for 
FA. Whether or not the molecules obtained from the databases carry 
molecular fingerprints from the bioactivity data were investigated. We 
explained the importance of XAI and molecular fingerprints for these 
molecules. 

The research paper is designed as follows. Section 1 contains the 
introduction to FRDA and XAI. Section 2 presents an analysis of current 
methods and materials used for FA. Specifically, it analyzes data, descriptors, 
and models for FA datasets using XAI and SHAP techniques. Section 3 
presents the results and discussion of the research and the statistical 
validation of the data. Finally, section 4 concludes that XAI can be a 
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valuable tool for pre-drug discovery in many diseases, including genetic 
diseases. 

1.1. Research Gaps and Motivation 

Due to the limited number of studies for FA and the inability to 
clearly define the function of the Frataxin (FXN) gene, there is no drug or 
gene therapy method yet. 

• Frataxin protein, the product of the FXN gene, is thought to be 
involved in the Fe-S mechanism. However, since the function 
studies of proteins are a challenging and complex process, there is 
no defined treatment method yet. Therefore, selecting a faster and 
less costly computational procedure and using large datasets are 
considered more appropriate ways to influence the symptomatic 
aspects of the disease. 

• FA is a neuromuscular condition. Clarke's colon loses its 
lumbosacral and nerve cells, replaced with capsular cells. Loss of 
proprioception and sensory ataxia are symptoms of posterior 
colon degeneration. Similarly, the loss of sensory ganglia results in 
the lack of tendon reflexes. Kyphoscoliosis is a problem caused 
by a misalignment of the spinal muscles, Aranca et al. (2016). It 
may be a more accurate technique to analyze chemicals that alter 
the expression of the FXN gene to overcome this complex 
system. 

• Although artificial intelligence developments are progressing 
rapidly, XAI in drug discovery is not yet at the desired stage. 
Instead, it can be developed by synergetic research efforts with 
different scientific backgrounds. Modelling choices and 
predictions must be examined in highly costly and time-sensitive 
situations such as drug discovery, deep learning, and machine 
learning applications. With XAI, it makes sense to develop hybrid 
approaches that are easier to understand and computationally 
affordable without forgetting the limitations of drug discovery. 

1.2. Related Works  

Recent advances in computational techniques and artificial 
intelligence have contributed significantly to medication discovery for 
various genetic and metabolic illnesses. One of the most considerable gifts 
computer technologies has given to drug discovery is the ability to anticipate 
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the biological activity of molecules, opening up new avenues and 
possibilities for developing new medications with stable features. 

For studies in breast cancer, Schaduangrat et al. presented a 
comprehensive classification structure-activity relationship (CSAR) 
investigation of inhibitors from the ChEMBL database, which included a 
starting set of 11,618 compounds for ER and 7,810 compounds for ER. In 
addition, they demonstrated the importance of nitrogen and aromatic 
bonded compounds (Schaduangrat et al. 2021). 

Rodriguez-Perez et al. explored a variant for precisely calculating 
Shapley values for decision tree methods. Further, they extended the 
evaluation of the SHAP methodology by systematically comparing this 
variant with the model-free SHAP method in estimating the combined 
activity and potency value. In this way, the logic and convenience of the 
SHAP value method are shown, Rodríguez-Pérez & Bajorath (2020). 

In another similar study, they used the random forest algorithm to 
classify the antimicrobial activity and identify molecular identifiers that 
support the antimicrobial activity of the investigated peptides. As a result of 
the explanations of the critical descriptors identified, it was revealed that 
polarity resolution is required for membrane lytic antimicrobial activity (Li & 
Nantasenamat, 2019). 

1.3. Research Contributions 

This study aims to predict bioactivity through machine learning for 
FA hereditary disease without drug and gene therapy and to detect molecular 
fingerprints affecting the model with XAI. 

By looking at FA pathology and signal transduction pathways, 
molecules that can reduce the amount of accumulated Fe and increase the 
expression level of the FXN gene were brought from the ChEMBL 
database. Fe chelation molecules have been introduced to reduce the 
amount of Fe, and HDAC inhibitors have been introduced to affect the 
gene expression level. While the bioactivity predictions of these molecules 
are made with machine learning, the effects of molecular fingerprints are 
also explained with XAI.  

The following questions were asked for Fe chelation molecules and 
HDAC inhibitors that could be developed for FA: 

• What is the distribution of bioactivity data of Fe chelation 
molecules and HDAC inhibitors that can be used for FA? 

• What are the effects of the molecular fingerprints of Fe 
chelation molecules and HDAC inhibitors on the model? 
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• Is a positive correlation between the SHAP values of each 
molecular fingerprint practical on the model and the data in the 
literature affecting the drug discovery and development process? 

 
Therefore, the main task of this research article is to construct an 

interpretable regression model for iron inhibition and HDA inhibitors. This 
includes (i) generating a bioactivity dataset from a new kinase family 
inhibitor ChEMBL for the regression model, (ii) identifying 881 PubChem 
fingerprints as features for inhibitors, (iii) generating eight regression model 
families, one for molecules, and (iv) removing preferred portions of 
inhibitors for each inhibitor family and shared portions of inhibitors for all 
inhibitors family using SHAP. Finally, our approach can provide an effective 
strategy for identifying and designing selective inhibitors targeting the iron 
and HDA families. XAI is more effective at the pre-drug discovery stage 
than existing drugs. 

2. Materials and Detailed Methods 

2.1. Data compilation and curation 

Datasets were collected from the version 25 ChEMBL database for 
Fe chelation and HDAC, Gaulton et al. (2017).The IC50 selection for the 
bioactivity unit was carried out through a data improvement process. 
Correspondingly, a data set of 436 and 1.163 compounds was obtained for 
Fe chelation and HDAC, respectively. Since this study also aimed to 
establish a classification model for HDAC and Fe chelation to achieve the 
goal, we set threshold values <1 and >10 µM to distinguish active and 
inactive compounds. At the end of these processes, a final non-redundant 
and ameliorated dataset was obtained for Fe chelation and HDAC, 
consisting of 262 and 945 compounds, respectively. 

2.2. Descriptors of Molecular 

Molecular fingerprint identifiers for the compounds in the obtained 
datasets were calculated using the PaDEL-Descriptor software, Yap (2011). 
SMILES indicators were used to calculate these molecular descriptors. 
Compound structures have been standardized using functions included in 
the PaDEL software. Molecular fingerprints play a crucial role in QSAR 
studies as they identify molecules and characterize chemical structure 
information quantitatively and qualitatively. As listed in Table 1, Malik et al. 
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(2020) used 12 molecular fingerprints in 9 classes to accurately identify 
chemical structures (Malik et al., 2020; Yap, 2011). 

2.3. Data splitting 

After obtaining a set of data that ML models can handle, this dataset 
is divided into two subgroups. One of these subgroups is the training set 
used to train the model, which has a higher data percentage. The second 
group is the smaller dataset dedicated to testing the model. Typically, there 
are many variables in the creation of mathematical descriptors. On the other 
hand, the training set aims to search for the best variable subset with the 
correct and necessary information. In this way, unnecessary variables are 
reduced as much as possible. To provide an understandable reason at the 
biological level, a subset of features is added to the original set without 
changing the content of the variables (Saeys et al., 2007).The model is 
trained after determining the best subset of variables. Overtraining should be 
avoided to keep the model's validity when dealing with unknown data. 
Cross-validation (CV) techniques are commonly used in these situations. CV 
provides for measuring the model's generalization degree during the training 
phase, evaluation of the model's performance, and performance estimation 
with unknown data. The original dataset is separated into two subgroups 
during each execution of the experiment in the CV (training set and 
validation set). The 10-fold CV approach was used in our study. The 
purpose of a CV is to enable you to select the best set of parameters. The 
performance of each model is measured using these parameters, and the 
model with the best performance is chosen. Finally, the best model's final 
validation is carried out. It can be considered that a novel predictive drug 
model has been built if the validation results are statistically significant, 
(Carracedo et al., 2021; Gramatica & Sangion, 2016).  

2.4. Statistical analysis 

In the research, we used minimum (Min), maximum (Max), median, 
and mean parameters for statistical analysis to determine the orientation of 
active and inactive compounds based on descriptors of compounds. The 
results were visualized with the Seaborn v0.8.1 Python package, Waskom et 
al.(2017). 

2.5. Explainability with Shapley additive explanations (SHAP) 

In this work, we were finally interested in understanding the effect of 
molecular fingerprints on models. Several features are advantageous in our 
SHAP selection among many explainability techniques Guidotti et al. (2019); 
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Lundberg & Lee (2017). The most important thing is that these values are 
independent of the model. Like RandomForestRegressor (Hu et al., 2020). 
They are not tied to a particular model type. It will also suit the 
RandomForestRegressor model we chose for HDAC inhibitors. It also 
offers SHAP values, accuracy, consistency, and incompleteness (Hu et al., 
2020; Lundberg & Lee, 2017; Lundberg et al., 2018). Finally, SHAP 
applications are straightforward and can be conveniently documented with 
images. Shapley's values were initially proposed as a game theory used to pay 
players somewhat based on their contribution to their total earnings, Shapley 
(1953). Estimating a model means assigning its quantitative significance 
based on contributions. Therefore, in our study, the SHAP value can be 
defined as the average marginal contribution of the feature value across all 
possible coalitions of possible features. A SHAP value for a given molecular 
fingerprint value can be explained as the difference between the actual and 
average predictions for the entire set of molecular fingerprints. When 
working on SHAP values, we should say that the estimated value does not 
differ after removing a corresponding feature, Molnar (2020). 

The SHAP method calculates the Shapley values of each feature and 
represents it as a linear model of all features. The SHAP value is calculated 
with the following formula (1). 

 

ϕ (̂f ( Xi )) ≡ ϕ0 + ∑K k=1 ϕk ( Xi ) , ∀i = 1, …, n                                (1) 
 

Where k denotes a single property variable, K denotes the total 
number of explanatory variables available; n is the total number of units that 

should be. ϕ ∈ RK; ϕk∈ R. ϕk (Xi) is the Shapley values of local functions, 
Hu et al. (2020); Lundberg & Lee (2017); Lundberg et al. (2019); Lundberg 
et al. (2018); Shapley (1953); Shapley (2016). 

Also, SHAP values use a specific index on individual features and 
among all binary features. In this way, SHAP values can easily explain the 
modelling of interactions that would go unnoticed. This feature is essential 
because it provides a clearer understanding of the variables in the model and 
the relationship between them, Li et al. (2020).Using the data of Fe chelation 
and HDAC inhibitors with the Python application, we calculated the SHAP 
values of the best-performing ML-based model as a training and test set. We 
used SHAP values to visualize the importance of molecular fingerprints for 
the models (RandomForestRegressor for Fe chelation, 
RandomForestRegressor for HDACi). Next, we generated SHAP value plots 
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for both models and compared how these molecular fingerprints contribute 
to the output of these models and their significance in the models. Finally, 
we analyzed the critical interactions between these molecular fingerprints 
and their targets, Moncada-Torres et al. (2021).  

In conclusion, we determined individual (local) and aggregated 
(global) plots to understand how variables affect model results in Fe 
chelation and HDAC inhibitors. Next, we decided on the SHAP findings 
and the effect of Fe chelation molecules and HDAC inhibitors on drug 
discovery. 

2.6. Model Development 

The current study uses Fe chelation and HDAC for FA in the 
prediction model and PubChem molecular fingerprints as predictors. The 
predictive capacity of the model is checked using three statistical measures: 
Coefficient of Determination (R2), mean square error (MSE), and Mean-
Absolute-Error (MAE). The mathematical formulas for these metrics are: 

 
R2 = determination coefficient 
RSS = sum of squares of residuals 
TSS = total sum of squares 
 

 
= number of data points 

= observed values 

= predicted values 
 
 

 
MAE= mean absolute error 

= prediction 

= true value 
= total number of data points 

2.7. Mechanistic interpretations of SelectFromModel 
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SelectFromModel is a meta-converter that uses the attribute of the 
estimator to evaluate and sort features and converts them to a dataset 
according to their order. This way, the estimator is adapted to the training 
data, and each feature's importance is calculated on the model. It ranks the 
meta-transformer properties according to their significance and selects the 
most suitable ones depending on the threshold value. In our study, the 
threshold values were 0.005 and 0.003 Fe chelation and HDACi, 
respectively, Stefanidou-Voziki et al. (2021). 

A property significance analysis was performed on selected 
informative descriptors to understand better the mechanistic details ruling 
Fe chelation and HDACi compounds. Because of the built-in capability of 
feature importance estimation and excellent prediction performance of the 
RandomForestRegressor and RandomForestRegressor model for Fe 
chelation and HDACi, respectively, they were used for analysis in this action. 
We used the SelectFromModel method to rank the importance of PubChem 
property descriptors. The top 10 PubChem identifiers of the SHAP value 
deduced from the SHAP value derived from the RandomForestRegressor 
models can be found in Figure4, and their infrastructures will contribute to 
the overall functioning of the compounds. It is discussed in the section 
below. In the proposed methodology, the dataset was trained and tested 
with 8 different ML models (Table 2-3). In addition, the SelectFromModel 
feature selection technique was included in the methodology to increase the 
prediction accuracy, and essential features were tested with machine learning 
models again (Shobana & Priya, 2021). 

3. RESULTS and DISCUSSION 

This study evaluates the activity and bioactivity of Fe chelator 
molecules and HDA inhibitors for FA genetic disease. This study also 
determines which molecular fingerprints dominate the model with XAI in 
developing molecules. As shown in Figure1, data were brought from the 
ChEMBL database after necessary targeting related to the deficiency of 
Frataxin protein due to Fe accumulation causing FA and insufficient 
expression of the FXN gene. After the bioactivity predictions of these 
molecules were made, a machine-learning method was applied according to 
whether they contained molecular fingerprints. Finally, molecular 
fingerprints that contributed the most to the model were determined by 
visualizing with XAI. 
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Figure 1. This study's methodological path is depicted as a diagram. 

3.1. Chemical Space Analysis 

Chemical space analysis is used to find typical characteristics 
between active and inactive chemicals in the classification of substances. The 
ratio of molecular weight (MW) to Ghose–Crippen–Viswanadhan octanol-
water partition coefficient (ALogP) for general analysis of compounds, 
Lipinski's five rules (Ro5) (weight (<500), octanol-water partition 
coefficient) for comparison of drug properties of compounds (ALogP< 5), 
number of hydrogen bond acceptors (<10), and hydrogen bond donors 
(<5)) were used as descriptors, Lipinski et al. (2001).The chemical space 
analysis of MW-LogP is visualized in Figure 2. As can be observed from the 
graphs generated for Fe chelation and HDAC, most of the compounds 
clustered in the 250-550 Da MW and 2-6 ALogP range. 
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Author’s own conception 

Figure 2For compounds in the iron chelation and HDACi datasets, 
plot MW vs ALogP. The graph depicts the chemical space of inhibitors 
against iron (left) and HDAC (right). Orange and blue represent active and 
inactive molecules, respectively. However, ALogP did not differ significantly 
in Fe chelation and HDACi molecules (p=0.135378, p=0.119859, 
respectively). While nHBDon and nHBAcc are higher in active groups, they 
are lower in inactive groups in Fe chelation. For HDACi, nHBDon was 
equal in both active and inactive groups, while nHBAcc was slightly higher 
in inactive groups. Figure 3, according to the Ro5 descriptors, illustrates the 
distribution of active and inactive substances. 
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Author’s own conception 

 
Figure 3 Lipinski's rule-of-five descriptions are plotted in a box. For 

the iron chelation (A) and HDACi (B) datasets, the four rule-of-five 
descriptors are shown. Blue and orange represent active and inactive 
chemicals, respectively. Compounds with a molecular weight of not more 
than 500 Da, a logP of less than 5, and nHBDon and nHBAcc of less than 
10 are the most common. Furthermore, employing the Mann-Whitney U 
test, statistical analysis revealed no significant difference between active and 
inactive substances. Inactive compounds' ALogP and MW values were not 
significantly different from active ones. 

Besides, it was observed that Fe chelation compounds have higher 
nHBDon and nHBAcc values in active compounds. In contrast, nHBDon 
and nHBAcc values do not present a significant difference for active and 
inactive compounds in HDACi. 

3.2. QSAR modelling 

We followed the Organization for Economic Co-operation and 
Development (OECD) guidelines to develop an interpretable QSAR model, 
OECD(2007).These guidelines consist of the following main points: (i) 
datasets have a defined endpoint, (ii) the algorithm for learning is 
straightforward, (iii) the area to which the QSAR model will be applied is 
well defined, and (iv) measures of predictability, mechanistic interpretations, 
and robustness are available, Malik et al. (2020).For a robust QSAR model, 
molecular fingerprint descriptors were applied in this study using PaDEL-
Descriptor software. Yap (2011).The interpretable properties from the 12 
fingerprints (i.e., PubChem, Substructure, and Klekota–Roth) are listed on 
our GitHub page(https://github.com/tissueandcells/XAI). 

3.3. Model Selection 

The R2, MAE and MSE values of the models created with the 
training data subjected to CV and the test data used to measure the 
performance of the models were calculated. As shown in Table 2, the 
RandomForestRegressor model gave the highest R2 values (0.701 and 0.572 
for training and testing, respectively) for Fe chelation. It also has low MSE 
and MAE values. As shown in Table 3, for HDAC inhibition, the 
XGBRegressor model gave the highest R2 values (0.983 and 0.619 for 
training and testing, respectively) and the lowest MAE and MSE values.  

https://github.com/tissueandcells
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Table 2 Statistical values of 8 models used according to training and test data for Fe 
chelation. 

Model Name Train 
R2 
Value 

Test 
R2 
Value 

Train 
MAE 
Value 

Test 
MAE 
Value 

Train 
MSE 
Value 

Test 
MSE 
Value 

RandomForestRegressor 0.701 0.572 0.375 0.511 0.254 0.534 

XGBRegressor 0.746 0.428 0.299 0.550 0.216 0.697 

DecisionTreeRegressor 0.749 0.392 0.280 0.542 0.214 0.740 

MLPRegressor 0.434 0.549 0.571 0.563 0.482 0.549 

BaggingRegressor 0.677 0.534 0.376 0.522 0.274 0.568 

LinearRegression 0.422 -3.195 0.576 297 0.492 3.900 

Support Vector Machine 0.514 0.523 0.494 0.572 0.414 0.581 

Ridge Regression 0.421 0.576 0.578 0.539 0.494 0.517 

The table was developed by the author 

Table 3 Statistical values of 8 models used according to training and test data for 
HDAC 

Model Name Train 
R2 
Value 

Test 
R2 
Value 

Train 
MAE 
Value 

Test 
MAE 
Value 

Train 
MSE 
Value 

Test 
MSE 
Value 

RandomForestRegressor 0.892 0.460 0.274 0.575 0.163 0.587 

XGBRegressor 0.912 0.386 0.219 0.132 0.588 0.668 

DecisionTreeRegressor 0.915 -0.054 0.197 0.854 0.128 1.149 

MLPRegressor 0.758 -0.06 0.442 0.906 0.367 1.158 

BaggingRegressor 0.883 0.429 0.279 0.598 0.176 0.622 

LinearRegression 0.523 0.241 0.638 0.670 0.725 0.826 

Support Vector Machine 0.741 0.252 0.398 0.716 0.392 0.814 

Ridge Regression 0.577 0.207 0.608 0.706 0.642 0.863 

The table was developed by the author 

 
We used the SelectFromModel method to grade the importance of 

PubChem property descriptors. The importance levels of the selected 
molecular fingerprints are listed in the bar graphs in Figure4. 
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Figure 4 Feature importance plot from Fe chelation(left) and HDAC (right) 
models. 

Author’s own conception 

3.4. Explainability with Shapley additive explanations (SHAP) 

The effect of the selected features on the model's functioning was 
determined with the SHAP method. The contribution of each attribute to 
the model is visualized with SHAP values. As shown in Figure 5 and 
Figure 6, bar and force graphs were created locally according to each 
sample's degree of importance. Beeswarm, heatmap, and decision graphics 
are general graphics. Molecular fingerprints on all compounds are ranked 
according to their importance (Figure7, 8, 9). 
 

 

Figure 5 Bar graphs created according to SHAP Values for Fe chelation and HDAC 
inhibition, respectively (from left to right) 

Author’s own conception 
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Figure 6 Force graph created according to SHAP Values for Fe chelation and 
HDAC inhibition, respectively (from top to bottom). 

Author’s own conception 

 

 

Figure 7 Beeswarm graphs created according to SHAP Values for Fe chelation and 
HDAC inhibition, respectively (from left to right). 

Author’s own conception 
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Figure 8 Heatmap created according to SHAP Values for Fe chelation and HDAC 
inhibition, respectively (from left to right) 

Author’s own conception 

 

 

 
Figure 9 Decision plot created according to SHAP Values for Fe chelation and 

HDAC inhibition, respectively (from left to right). 
Author’s own conception 

A summary of the top 10 features in the iron chelation and HDAC 
model, along with their corresponding SMARTS patterns and explanations, 
is detailed on GitHub(https://github.com/tissueandcells/XAI). 

3.5. Aromatic fingerprints 

According to the values obtained from the SHAP values and images 
for Fe chelation, it was seen that the maximum number of PubChem 
fingerprints was associated with aromaticity. In other words, 
PubChemFP152, PubChemFP374, PubChemFP485, PubChemFP821, 

https://github.com/tissueandcells
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PubChemFP188, PubChemFP672, and PubChemFP187 fingerprints were 
associated with the aromaticity and ring structures as seen in the 
explanations. Deferiprone (Ferriprox), Beutler (2007); Molina-Holgado et al. 
(2008); Reeder & Wilson (2005) and Clioquinol, Cherny et al. (2001); Hider 
et al. (2008); Kaur et al. (2003) drugs also support this situation. They are Fe 
chelation drugs that center the annular structures. Molecular fingerprints 
such as PubChemFP613, PubchemFP656, PubChemFP672, 
PubChemFP485 and PubChemFP821 explain the importance of single and 
double bonds made by cyclic structures and also reflect the content of many 
existing drugs. For example, alpha-tocopherol quinone, a synthetic molecule 
comparable to Coenzyme Q 10 but with a higher redox potential, is believed 
to reduce mitochondrial oxidative stress. Considering the structure of this 
compound, single and double bonds in aromatic rings draw attention. 
However, no studies are in progress despite significant improvement over 4 
points in a dose-dependent manner, especially in the placebo group, 
Rodríguez et al. (2020). Thanks to the information given by XAI, we 
understand that we need to focus on pro-drug studies, which are in a 
positive process. Fe overload is a process that predisposes to oxidative stress 
and tissue damage. Since Fe overload paves the way for oxidative stress, 
information can also be obtained about drug molecules indirectly targeting 
oxidative stress. 

The similarity of the molecular background represented in 
PubChemFP116 with the structure of VP-20629 indole-3-propionic acid 
(also known as SHP622, OXIGON or OX1) is noteworthy. This 
antioxidant, which has neuroprotective properties, was developed for 
Alzheimer's disease with its capacity to prevent the production of beta-
amyloid fibrils, Bendheim et al. (2002). However, studies were conducted by 
including 46 FA participants. While tolerance was observed at all doses, 
great benefits were not observed. 

3.6. Nitrogen-containing fingerprints 

In the SHAP values for HDAC, nitrogen atoms appear in some 
molecular fingerprints. PubchemFP656, PubChemFP338, PubChemFP397, 
PubchemFP517, PubchemFP791, and PubchemFP645 belong to the 
nitrogen-containing class. These nitrogen-containing molecular fingerprints 
are in the group of amines and amides and constitute a high property 
number for HDAC. Furthermore, it is known that the N atom is in aromatic 
rings in hydroxamic acid and benzamide structures, which are dominant 
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inhibitors. This also backs up the SHAP findings. Similarly, the presence of 
the CH group in aromatic ring systems with N atoms is the most common 
bioisosteric conversion utilized to simulate natural ligand binding while 
creating antagonistic consequences. Kumar et al. (2011). 

The fact that 10 10 feature selections are nitrogen-themed features 
also highlighted this importance. On the side, PubChemFP152, one of the 
leading molecular fingerprints for Fe chelation, represents 5-membered ring 
compounds containing at least one nitrogen and two heteroatoms. These 
groups are called azoles. Thiazoles and isothiazoles contain nitrogen and a 
sulfur atom in their ring structure. It has been supported by various studies 
that thiazoles can be used in antiepileptic drugs, Işık et al. (2015). Since the 
muscle symptoms in the mechanism of epilepsy are similar to FA, azole 
groups may be promising targets for drug discovery. The sulfur content of 
PubChemFP489 and PubChemFP349 features in the prominent fingerprints 
for HDAC is also noteworthy. This result may be an effective molecular 
fingerprint in reducing the symptoms of FA genetic disease. Thiamine 
(Vitamin B1) will also be a shining example of molecular fingerprints where 
nitrogen-based fingerprints are intense. N atoms and cyclic structures in 
thiamine are dominant, and their deficiency causes severe neurological 
changes in the central and peripheral nervous systems. Thiamine deficiency's 
molecular and clinical changes, such as impaired oxidative stress metabolism, 
increased oxidative stress, and selective neuronal loss, islike FA genetic 
disease. When thiamine, which has N and ring structures, was evaluated in 
34 FA patients, improvement was observed in tendon reflexes and 
thickening of the ventricular septum. These results also showed it could be 
therapeutic, Costantini et al. (2016). 

4. LIMITATIONS 

This study, although a guiding study for discovering new drug 
candidates for FA, which is an orphan genetic disease, has some limitations:  

The study used only two data sets (ChEMBL and PubChem) to 
predict the bioactivity values of molecules related to FA. Therefore, it is not 
clear whether the results are valid for molecules obtained from different data 
sources or different diseases. 

The study used only one of the XAI methods, namely the SHAP 
(Shapley Additive exPlanations) technique, to explain the bioactivity values 
of the molecules. Therefore, it did not provide information on the 
performance and comparison of other XAI methods. 

The study, being a theoretical study, requires the validation of the 
predicted bioactivity values and explanations experimentally. Therefore, the 
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practical applications and contributions of the study have not been proven 
yet. 

5. CONCLUSIONS 

FA is the most wide spread in herited ataxia, accounting for around 
half of all ataxia cases and seventy percent of individuals under 25, Aranca et 
al. (2016).However, current inhibitors and gene therapy, on the other hand, 
are insufficient since they cannot effectively alter stored iron and create a 
change in gene expression. Therefore, this study addressed these issues 
qualitatively and quantitatively by constructing a QSAR model for Fe 
chelation and HDAC that could distinguish active and inactive compounds. 
The activity prediction of these molecules was appraised through machine 
learning algorism and various fingerprint identifiers classes. The results 
showed that combining the RF technique with PubChem fingerprints 
produced the most interpretable identifiers and the highest-performing 
model. Aromaticity and amine groups are significant for active compounds, 
according to the property analysis of the vital infrastructure contributions 
from the SHAP values. However, much research has not focused on FA 
disease. Thus, therapeutic compounds are worth investigating further. As a 
result, the findings of this study can be used as a general guideline for 
developing potentially active and selective Fe chelation compounds and 
HDAC inhibitors based on data. Documentation of the work is available on 
GitHub ((https://github.com/tissueandcells/XAI). 

The primary purpose of this paper is to apply AI-based transparency 
and explainability models to expand the number of therapeutic compounds 
available for usage in FA hereditary disorders. This will support potential 
drug development and discovery and help build confidence. The following 
are the study's main findings: 

• Deep learning could be a valuable tool for predicting 
pharmaceutical manufacturing and development, but its broad 
applicability must be verified in various inherited disorders. 
Explainable algorithms like SHAP are critical for increasing trust 
and transparency in machine learning models, so data-driven 
models may be used in medication and chemical development. 
This study discovered the importance of Fe chelation and 
HDAC inhibitors as predictors in the prediction model of 
molecular fingerprints using the SHAP annotator. 

https://github.com/tissueandcells
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• Future studies should focus on analyzing SHAP plots for long-
term prediction and examining the SHAP properties of 
therapeutic studies and other contributing molecules that may 
influence FA. 

• XAI, which has various benefits in terms of cost and time to the 
drug discovery process, has negative aspects such as low model 
accuracy, conflicting molecular fingerprints, or choosing the 
suitable threshold. Nevertheless, expanding computational 
studies, increasing their applicability, in vitro and in vivo 
experiments, and XAI and drug discovery studies will support 
each other and are considered promising for future drug studies. 
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