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 1.  Introduction 
 Stroke  is  still  one  of  the  most  prevalent  causes  of long-term  disability  globally  (Avan  & 

 Hachinski,  2021).  It  impairs  motor  function  and  makes  it  difficult  for  victims  to  carry  out  daily 
 tasks  on  their  own.  To  enhance  patient  outcomes,  there  is  a  need  for  innovative  approaches  to 
 neurorehabilitation.  Thus,  the  integration  of  magnetoencephalography  (MEG)  with  brain-computer 
 interface  (BCI)  technology  has  emerged  as  a  potential  avenue  (Tedesco  et  al.,  2019).  MEG  is  a 
 non-invasive  neuroimaging  method  that  measures  magnetic  fields  produced  by  brain  neuronal 
 activity.  With  its  great  temporal  resolution  and  millisecond  precision  in  capturing  brain  activity, 
 MEG  has  shown  itself  to  be  an  invaluable  tool  in  neuroscience  research  (Mellinger  et  al.,  2007). 
 However,  MEG  data  are  frequently  tainted  by  a  variety  of  artifacts  generated  by  measurement 
 systems  and  human  subjects  (Medvedovsky  et  al.,  2007).  These  artifacts  include  environmental 
 noise,  as  well  as  physiological  signals  like  muscle  activity,  heartbeat  (Puce,  &  Hämäläinen,  2017), 
 and  eye  movements  (Carl  et  al.,  2012).  If  not  properly  addressed,  these  artifacts  have  the  potential 
 to mask the relevant neural signals, potentially leading to inaccurate interpretations of brain activity. 

 The  primary  obstacle  encountered  in  the  acquisition  of  MEG  signals  is  the  sensitivity  of 
 MEG  systems  to  artifacts.  Ambient  noise,  a  non-physiological  artifact  that  includes  electromagnetic 
 interference  from  electrical  power  lines,  devices,  and  even  the  Earth's  magnetic  field,  is  one  type  of 
 noise  or  artifact  in  signal  capture.  Controlling  these  artifacts  can  be  achieved  through  strict 
 experimental  procedures  and  precise  recording  equipment  up  to  a  certain  point.  The  MEG  signal 
 may  also  be  distorted  by  the  magnetic  fields  created  by  biological  artifacts  such  as  cardiac  activity, 
 eye  movements,  and  muscle  activity  (Fred  et  al.,  2022).  Moreover,  the  MEG  signal  can  become 
 distorted  even  by  slight  head  movements  made  by  the  patient.  It  can  be  challenging  to  differentiate 
 these  artifacts  from  real  brain  activity  because  they  can  seem  like  transient  bursts  or  rhythmic 
 oscillations  in  the  MEG  signal.  The  removal  of  artifacts  from  MEG  data  is  an  essential  step  in  the 
 preprocessing  stage.  This  strives  to  separate  the  real  brain  signals  from  the  interfering  artifacts, 
 improving the data's quality and interpretability. 

 Powerline  interference  is  a  high-frequency  noise  in  the  50–60  Hz  range  that  is  a 
 non-physiological  artifact  and  is  typically  caused  by  power  supply  lines.  These  can  appear  as 
 periodic  spikes  in  the  MEG  signal  that  mask  the  underlying  brain  activity  and  reduce  the 
 signal-to-noise  ratio  (Dattatraya  et.  al,  2008).  The  movement  of  the  head  while  recording  might 
 skew  the  spatial  localization  of  neural  signals  making  it  difficult  to  pinpoint  the  precise  locations  of 
 brain  activity.  The  eye  movements  and  cardiac  activity  might  add  spurious  signals  to  the  MEG  data, 
 resulting  in  inaccurate  interpretations  of  neural  activity  (Zhang  et  al.,  2021).  In  recordings  that 
 require  motor  tasks,  muscle  activity  such  as  clenching  of  the  jaw  or  movements  of  the  face  may  also 
 interfere  with  the  MEG  signal.  To  ensure  accurate  interpretation  of  brain  signals  during  data 
 analysis,  it  is  crucial  to  properly  address  the  artifacts  that  occur  during  the  signal  acquisition 
 process.  Researchers  employ  various  advanced  techniques  to  overcome  these  challenges  in  MEG 
 data analysis. 

 The  accuracy  of  ensuing  analysis  and  interpretations  is  improved  by  increasing  the 
 signal-to-noise  ratio  of  MEG  data,  which  is  made  possible  by  denoising  methods.  Some  of  the 
 well-known  denoising  algorithms  used  in  MEG  research  are  the  Stationary  Wavelet  Transform 
 (SWT),  InfoMax,  FastICA,  and  SOBI  (Second  Order  Blind  Identification)  (Peksa  et  al.,  2023;  Teng 
 et  al.,  2021).  SWT  is  a  multiresolution  analysis  method  that  divides  MEG  signals  into  distinct 
 frequency  bands  using  wavelet  functions.  Reconstructing  the  denoised  signal  by  thresholding  the 
 wavelet  coefficients  to  reduce  noise  is  the  main  step  in  signal  decomposition  using  SWT.  This 
 method  is  effective  for  adaptively  denoising  signals  with  non-stationary  features  and  efficiently 
 capturing  both  temporal  and  frequency  information.  The  importance  of  Independent  Component 
 Analysis  (ICA)  in  data  preprocessing  lies  in  its  ability  to  extract  sources  of  interest  even  in  the 
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 absence  of  reference  signals  (Albera  et  al.,  2012;  Haumann  et  al.,  2016).  ICA  makes  use  of  the 
 non-Gaussian  structure  of  the  data  by  assuming  that  the  sources  are  statistically  independent. 
 Although  the  methods  used  in  the  many  ICA  variations  vary,  their  main  objective  is  to  isolate  the 
 underlying independent sources (Mäkelä, 2022). 

 In  the  field  of  MEG  research,  the  development  of  effective  methods  for  removing  artifacts  is 
 still  crucial.  In  this  work,  we  evaluated  the  effectiveness  of  the  wavelet  decomposition  technique  in 
 conjunction  with  three  ICA  algorithms:  FastICA,  Infomax,  and  SOBI,  in  minimizing  artifacts.  The 
 basic  concept  of  the  SWT  is  its  fixed  time-frequency  resolution  and  simultaneous  analysis  of 
 signals  in  the  frequency  and  time  domains.  It  is  especially  helpful  for  analyzing  non-stationary 
 MEG  signals  because  of  this  stationary  characteristic.  The  fundamental  idea  behind  the  ICA 
 technique  used  here  is  that  signals  collected  on  the  scalp  are  a  combination  of  temporally 
 independent  neurological  and  artifactual  sources  (Phothisonothai  et  al.,  2012).  This  method  is 
 predicated  on  the  idea  that  potentials  from  different  parts  of  the  brain,  the  scalp,  and  other  sources 
 combine  linearly.  This  approach  avoids  the  requirement  for  reference  channels  for  each  artifact 
 source  by  utilizing  spatial  filters  developed  from  ICA  techniques  (Naresh  Kumar,  et  al.  2012).  The 
 resulting  MEG  signals  are  generated  by  successfully  reducing  the  contributions  of  the  identified 
 artifacts  after  independent  time  courses  associated  with  both  brain  and  artifact  sources  have  been 
 extracted. 

 The  main  objective  of  the  proposed  study  is  to  conduct  a  comprehensive  comparison  of  the 
 most  widely  utilized  MEG  denoising  techniques.  In  addition  to  evaluating  their  performance,  we 
 also  analyze  the  impact  of  these  methods  on  signal  quality,  aiming  to  determine  the  optimal 
 approach for preserving the integrity of neural data while effectively minimizing artifacts. 

 2.  Proposed Methodology 
 A  typical  computational  structure  for  choosing  the  best  MEG  signal  denoising  method  is 

 displayed  in  Figure  1.  In  this  study,  MEG  signals  from  the  MEG-based  BCI  dataset  acquired  at  the 
 Intelligent  Systems  Research  Centre,  Ulster  University  are  used  as  input  in  this  work  (Rathee  et  al., 
 2021).  A  traditional  BCI  pattern  that  involves  cognitive  imagery  (CI)  and  motor  imagery  (MI) 
 activities  is  used  to  record  the  data.  These  MEG  data  were  recorded  from  17  healthy  subjects  using 
 a  306-channel  Elekta  Neuromag  system  which  includes  102  magnetometers  and  204  planar 
 gradiometers.  Since  the  MEG  signals  are  provided  in  unprocessed  form,  it  is  presumed  that  they  are 
 clean and normalized. 

 The  MEG  signals  are  obtained  from  a  multi-channel  system  where  there  is  a  possibility  that 
 some  of  the  channels  may  contain  bad  data.  It  becomes  essential  to  identify  faulty  channels  in  data 
 processing  because  failing  to  do  so  can  negatively  impact  analysis  further  down  the  pipeline.  The 
 process  of  rejecting  faulty  data  segments  involves  manually  establishing  a  threshold  value.  Data  is 
 classified  as  bad  when  its  peak-to-peak  amplitude  surpasses  this  threshold  (Gramfort  et  al.,  2014). 
 To  reduce  or  eliminate  power  line  noise  in  signal  processing,  a  notch  filter  operating  at  a  frequency 
 of  50  Hz  is  used.  Some  denoising  techniques,  including  the  Stationary  Wavelet  Transform  (SWT), 
 FastICA,  Infomax,  and  SOBI  ICA  algorithms,  are  applied  to  the  preprocessed  input  signals  after 
 which  their  efficacy  is  determined  by  computing  several  parameters,  such  as  Power  Spectral 
 Density  (PSD),  Signal  to  Noise  Ratio  (SNR)  and  Percentage  Root  mean  square  Difference  (PRD). 
 The  ideal  denoising  technique  is  selected  based  on  performance.  The  denoising  methods  utilized  in 
 this work will be described in the section that follows. 
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 Figure 1. Block diagram of proposed methodology 

 3.  Methodology and Explanation 
 In  this  section,  we  outline  our  approach  through  three  key  subsections:  Removal  of  power 

 line  interference,  which  details  techniques  for  eliminating  noise  from  power  lines.  Removal  of 
 physiological  artifacts,  which  focuses  on  methods  to  identify  and  remove  interference  from 
 physiological  sources  such  as  muscle  activity  and  eye  movements;  and  finally,  Performance 
 evaluation,  where  t  he  criteria  and  metrics  used  to  assess  the  effectiveness  of  the  denoising 
 techniques in preserving signal quality and minimizing artifacts are presented. 

 3.1 Removal of Power line interference 
 Power  lines,  that  operate  at  frequencies  of  about  50  or  60  Hz,  have  the  potential  to  interfere 

 with  MEG  signals.  MEG  signals  usually  carry  information  over  a  large  range  of  frequencies,  even 
 those  in  proximity  to  the  power  line  interference  frequency.  To properly  assess  the  brain  activity 
 recorded  by  the  MEG,  it  is  necessary  to  eliminate  this  interference.  Specifically,  a  notch  filter 
 mechanism  is  made  to  remove  power  line  interference  from  MEG  signals  (Leske  et  al.,  2019).  Since 
 the  power  line  operates  at  the  frequency  of  50  Hz,  a  notch  filter  is  specifically  made  to  target  this 
 frequency  (Kumar  et  al.,  2021).  The  notch  filter  attenuates  signals  within  the  range  of  interest  while 
 maintaining  the  rest  of  the  frequency  spectrum  unaltered.  In  this  work,  the  power  line  noise 
 frequencies  are  selectively  suppressed  by  passing  the  MEG  data  via  a  notch  filter.  All  of  the  original 
 frequency  content  of  the  filtered  signal  is  retained,  except the  frequencies  that  the  notch  filter 
 attenuates or eliminates. 
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 3.2  Removal of Physiological Artifacts 
 3.2.1 Wavelet-based denoising technique 
 Decomposing  artifactual  components  using  wavelet  transform  is  a  frequently  used  method 

 for  reducing  undesired  artifacts.  The  Stationary  Wavelet  Transform  (SWT)  effectively  removes 
 artifacts  due  to  its  translation  invariance  making  it  preferable  to  both  Continuous  Wavelet 
 Transform  (CWT)  and  Discrete  Wavelet  Transform  (DWT)  (Zangeneh  Souroush  et  al.,  2022). 
 Non-stationary  data  can  be  processed  and  analyzed  mathematically  using  the  SWT  approach.  It 
 offers  a  more  versatile  representation  by  accommodating  various  time-frequency  resolutions  at 
 various  sizes.  Instead  of  doing  decimation,  SWT  carries  out  a  multiresolution  analysis,  after  which 
 filters  are  adjusted  to  carry  out  thresholding.  The  signals  generated  by  the  highpass  and  lowpass 
 filters  have  the  same  length.  The  signal  is  split  into  precise  and  approximative  coefficients  at  each 
 level (Kumar et al., 2021). 

 The  original  signal  is  subjected  to  several  high-pass  and  low-pass  filters,  obtaining  detailed 
 and approximation coefficients at each level. 

 The  signal  is  filtered  and  then  downsampled  to  the  next  level  to  provide  a  multiresolution 
 representation. 

 Repetitively applying the steps of filtering, and downsampling to n decomposition levels. 
 The  denoised  MEG  signal  is  eventually  rebuilt  by  applying  the  inverse  of  SWT  after  the 

 noise has been removed. 

 3.2.2 Blind Source Separation 
 The  term  "blind"  in  signal  processing  refers  to  the  absence  of  prior  knowledge  about  the 

 source  signals  or  the  mixing  process.  Independent  component  analysis  (ICA)  is  the  most  commonly 
 used  technique  for  blind  source  separation  (BSS).  The  statistical  independence  of  the  mixed  signals 
 is  a  concept  that  is  used  by  ICA  algorithms.  By  using  ICA,  the  combined  signals  are  divided  into 
 additive, maximally independent subcomponents, each of which represents a different brain source. 

 A  linear  relationship  can  be  used  to  define  the  ICA  model  if  X  is  the  collected  signal 
 mixture of dimension n and S is taken to be the genuine source signals of the same dimension. 

 X = AS  (1) 
 Here  A  is  the  unknown  mixing  matrix.  The  primary  problem  with  this  approach  is  that  S  and 

 A are not known. The task is to identify W, the unmixing matrix, such that 
 Y = WX  (2) 

 An  n-channel  data  array  is  thus  converted  into  an  n-dimensional  component  space  using  the 
 ICA.  Every  temporal  component  in  Y  is  maximally  independent  since  it  contains  the  least  amount 
 of mutual information (Breuer et al., 2014). 

 The  MEG  data  in  this  study  was  processed  using  three  different  ICA  algorithms:  runica, 
 FastICA,  and  Second  Order  Blind  Identification  (SOBI).  These  algorithms  have  the  same  goal  and 
 are  identical  mathematically  but  the  methods  used  by  each  algorithm  to  estimate  independence 
 differ  (Sahonero-Alvarez,  &  Calderon,  2017).  Infomax  uses  a  parametric  technique  to  estimate 
 component  probability  distributions  whereas  FastICA  optimizes  neg-entropy  of  component 
 distributions.  SOBI  is  a  second-order  technique  that  depends  on  temporal  correlations  in  the  source 
 data and makes use of them (Delorme, Sejnowski, & Makeig, 2007). 

 a) Infomax ICA 
 Using  the  Infomax  principle,  the  runica  method  produces  stable  decompositions  by 

 arbitrarily  separating  mixes  of  independent  sources  (Popescu,  2021).  In  Infomax  the  learning  rate  is 
 an  important  component  and  it  fluctuates  during  the  learning  process.  The  aim  is  to  determine  a 
 learning rate that achieves a balance between precise estimation accuracy and rapid learning. 

 The following steps are involved in the Infomax ICA algorithm: 

 63 



 BRAIN. Broad Research in 
 Artificial Intelligence and Neuroscience 

    Data  preprocessing:  After  centering  the  data,  X  by  deducting  the  mean,  the  data  is 
 transformed  to  accomplish  whitening,  resulting  in  an  identity  matrix  for  the  covariance 
 matrix. 

    Iterations  of  ICA:  A  nonlinearity  function  is  applied  to  the  whitened  data.  Then 
 to facilitate  independence  and  non-Gaussianity,  iteratively  modify  the  weight  matrix  by 
 applying a learning rule. 

    Normalize the weight matrix. 
    Examine  if  the  weight  matrix  has  changed  between  iterations  to  determine  whether 

 convergence  has  occurred.  The  resultant  weight  matrix  should  then  be  used  to  translate 
 the whitened data back into the source space. 

 b) FastICA 
 FastICA  uses  a  fixed-point  iteration  strategy,  and  orthogonal  rotation  of  pre-defined  data  to 

 maximize  a  metric  of  non-Gaussianity  for  the  rotated  components.  It  is  simple  to  use  because  it 
 lacks a learning rate or additional configurable settings (Tharwat, 2018). 

 The procedures in the FastICA algorithm involve: 
 ●  Data  Centering:  The  data  matrix  X  reflecting  the  observed  mixed  signals  is  centered  by  subtracting 

 the mean from each column. 
 ●  Whitening:  Apply  whitening  to  the  centered  data  to  create  a  space  where  the  components  are 

 statistically  uncorrelated.  This  entails  determining  the  eigenvalue  decomposition  of  the  covariance 
 matrix and utilizing a transformation to produce decorrelation. 

 ●  Initialize  a  square  weight  matrix  A  with  random  values  that  will  be  adjusted  iteratively  to  find  the 
 independent sources. 

 ●  For a predetermined number of iterations or until convergence: 
 Determine the weight matrix A multiplied by the data that has been whitened. 
 The  product  should  be  subjected  to  a  non-linear  function,  usually  the  hyperbolic  tangent 
 (tanh). Its non-linearity encourages a non-Gaussian behaviour. 
 To  maximize  non-Gaussianity  and  independence,  adjust  the  weight  matrix  using  the 
 computed values. 

 ●  Normalize the weight matrix A. 
 ●  The unmixing matrix W is composed of the independent components. 

 c) Second-order Blind Identification (SOBI) 
 The  second-order  statistics-based  SOBI  approach  operates  by  diagonalizing  matrices 

 concurrently  that  are  connected  to  a  significant  spatial  representation  of  the  sequences  that  must  be 
 separated.  It  seeks  to  separate  the  components  by  jointly  diagonalizing  several  correlation  matrices 
 (Frederic, Rouijel, & Elghazi, 2021). 

 Estimate  the  covariance  matrix  for  the  data  matrix:  For  the  MEG  data  matrix,  X  has  N 
 number of sensors, and T samples in each trial. The covariance matrix is calculated as 

 P =  (3) 
 Form  the  whitening  matrix:  The  whitening  matrix,  W  is  obtained  by  multiplying  the  square 

 root  inverse  of  the  eigenvalues,  by  the  matrix  of  eigenvectors,  R  where  A  and  R  are 
 decomposed from P. The whitened data is calculated from this whitened matrix, W, and is given by 

 D = WX  (4) 
 Estimation  of  Source  Matrix:  Multiply  the  matrix  that  results  from  calculating  the 

 cross-products of the whitened data with the whitening matrix, W, to form the source matrix, S. 
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 3.3. Performance Evaluation 
 The  effectiveness  of  the  various  denoising  methods  is  qualitatively  examined  through  visual 

 examination.  Furthermore,  we  employed  four  parameters  to  measure  the  performance:  Percentage 
 Root  mean  squared  Difference  (PRD),  Signal-to-noise  ratio  (SNR),  and  Power  Spectral  Density 
 (PSD). 

 A  measurement  of  the  average  difference  between  the  values  of  the  input  signal  and  the 
 denoised  signal  is  provided  by  Root  Mean  Square  Error  (RMSE).  It  is  often  used  to  assess  how 
 accurate  denoising  methods  are;  a  lower  RMSE  denotes  greater  performance  (Mannan,  Kamran,  & 
 Jeong, 2018). 

 RMSE =  (5) 
 where  x  i  is  the  i  th  input  signal,  y  i  is  the  corresponding  denoised  signal  and  N  is  the  number  of 

 channels. 
 PRD  evaluates  how  similar  the  input  and  denoised  signals  are  to  one  another.  It  indicates  the 

 total variation between the two signals and is expressed as a percentage. 

 PRD =  (6) 

 where  is the mean of the input signal. 
 SNR  is  used  to  measure  how  good  a  signal  is  in  comparison  to  the  amount  of  background 

 noise  (Gonzales-Moreno  et  al.,  2014;  Jaiswal  et  al.,  216).  The  power  difference  between  the  signal 
 and noise is commonly used to express it. SNR can be defined mathematically as: 

 SNR =  (7) 
 where P(s) and P(n) denote the power of the signal and the noise respectively. 
 Since  there  is  no  information  about  noise  in  our  dataset,  the  SNR  of  the  input  signal  is 

 approximated  using  the  standard  deviation.  The  theoretical  noise  standard  deviation  is  computed 
 assuming Gaussian noise, which results in an uncorrelated signal and noise. 

 SNR(input) =  (8) 
 where  SD(i)  and  SD(nt)  denote  the  standard  deviation  of  the  input  signal  and  theoretical 

 noise  respectively.  In  the  case  of  output  SNR,  the  noise  power  is  calculated  as  the  mean  square  error 
 (MSE) between the input and output signals. 

 PSD  is  very  helpful  in  determining  the  effects  of  denoising  on  a  signal's  frequency 
 characteristics  (Seymour  et  al.,  2022).  It  is  possible  to  compare  the  frequency  content  of  the  input 
 and  denoised  signals  by  computing  the  PSD  for  each.  It  is  estimated  by  dividing  the  signal  into 
 overlapping  segments,  the  periodogram  for  each  segment  is  calculated,  and  the  resultant 
 periodograms are averaged. 

 These  parameters  provide  an  extensive  evaluation  of  denoising  performance  by  considering 
 the amplitude, accuracy, symmetry, and frequency properties of the signals. 

 4. Experimental Results and Discussions 
 The  experiments  were  performed  with  the  publicly  available  dataset  that  included 

 information  from  17  different  participants.  Every  subject  completed  200  trials,  which  consisted  of 
 four  different  tasks,  and  the  data  was  gathered  from  306  channels  for  every  trial.  Each  trial  is  of  7s 
 duration  encompassing  both  a  rest  period  of  2s  and  a  task  period  of  5s.  These  channels  yielded  7000 
 consecutive  samples  per  trial.  The  dataset  comprised  a  total  of  two  sessions  from  each  participant. 
 (Rathee  et  al.,  2021).  The  neural  activity  captured  concurrently  from  several  brain  areas  is 
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 represented  by  these  samples.  Initially,  we  looked  for  defective  channels  since  this  dataset  was  not 
 preprocessed.  After  that,  notch  filters  set  at  a  frequency  of  50Hz  were  applied  to  eliminate  any 
 power  line  interference  present  in  the  signal.  This  study  includes  input  data  from  all  individuals  and 
 provides sample data for visualization. 

 4.1 Qualitative Analysis 
 The  signal  is  qualitatively  analyzed  after  notch  filtering,  as  well  as  on  the  preprocessed 

 signals  using  signal  processing  algorithms.  Additionally,  the  PSD  of  the  signals  is  examined  to 
 evaluate  the  effectiveness  of  the  denoising  and  preprocessing  techniques.  This  comprehensive 
 analysis  enables  a  deeper  understanding  of  the  improvements  in  signal  quality  and  noise  reduction, 
 offering insights into the performance of each signal processing method. 

 (a) 

 (b) 
 Figure 2. (a) Sample input data from channel 1 and channel 2 (of one trial), 

 (b) corresponding data after post-notch filtering channel 1, channel 2 

 Figure  2  shows  sample  input  data  from  two  channels  and  the  corresponding  filtered  data  using 
 a  notch  filter.  A  notable  observation  is  that  the  input  data  was  much  more  irregular  than  the  filtered 
 data.  The  plot  of  the  data  seems  to  be  more  consistent  across  different  samples  after  being  filtered. 
 Notch  filtering  produces  a  clearer  signal  free  of  50  Hz  noise  by  efficiently  attenuating  the  powerline 
 interference  that  is  present  in  the  raw  MEG  signal.  It  is  possible  that  the  filtering  process  eliminated 
 certain  signal  components,  such  as  noise  or  high-frequency  fluctuations,  which  caused  a  decrease  in 
 the  total  signal  amplitude.  This  is  demonstrated  by  the  reduction  in  amplitude  observed  when 
 comparing the signal amplitude after filtering to the amplitude before filtering. 

 The  signal  following  notch  filtering  is  utilized  as  input  for  four  algorithms—SWT,  Infomax, 
 FastICA,  and  SOBI—to  effectively  eliminate  physiological  artifacts  such  as  cardiac  signals,  muscle 
 activity,  and  eye  movements.  Figure  3  depicts  the  processed  signals  resulting  from  the  application 
 of the aforementioned denoising algorithms. 
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 (a) 

 (b) 

 (c) 

 (d) 
 Figure 3. Plots of output signals from two channels- channel 1 and channel 2 (a) after SWT 

 processing (b) after InfomaxICA (c) after FastICA (d) after SOBI processing 

 The  output  graphs  of  the  denoised  algorithms  indicate  that  each  technique  reduces  the 
 amplitude  of  the  input  signal  to  a  varying  degree.  The  SWT  and  SOBI  algorithms  show  an 
 amplitude  reduction  in  a  comparable  range  whereas  FastICA  exhibits  the  least  amount  of  decrease. 
 Infomax,  when  compared  to  the  input  signal  feed,  achieves  a  greater  reduction,  with  amplitudes  in 
 the  e-13  range.  The  output  waveform  also  appears  more  regular,  suggesting  that  Infomax  is 
 particularly  effective  at  eliminating  physiological  artifacts  and  producing  a  clear  signal  with  low 
 residual noise. 
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 Figure 4. Graphical representation of PSD of input MEG signal, signal after applying notch 
 filter, FastICA, Infomax, SWT, and SOBI processing 

 The  Power  Spectral  Density  (PSD)  graph  illustrates  the  distribution  of  power  in  the  signal 
 across  various  frequencies.  The  denoising  algorithm  should  ideally  reduce  or  minimise  the  power 
 associated  with  noise,  while  it  should  preserve  or  have  minimal  effect  on  the  power  connected  with 
 the signal. At the relevant frequencies, lower PSD values indicate less power. 

 Figure  4  is  a  visual  representation  of  a  PSD  plot,  showcasing  the  frequency-domain  data  of  a 
 single  trial  for  which  a  few  channels  and  a  limited  number  of  samples  are  chosen  to  facilitate  clearer 
 visualization  and  a  better  understanding  of  the  data.  In  the  graph,  frequency  is  depicted  on  the 
 x-axis,  usually  measured  in  hertz  (Hz),  and  power/frequency  is  represented  on  the  y-axis,  measured 
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 in  dB/Hz.  For  a  PSD  plot  to  be  considered  ideal,  it  should  have  a  smooth  and  continuous 
 distribution  with  clear  peaks  that  correspond  to  the  frequencies  of  interest.  Additionally,  it  should 
 have  low  power  levels  in  frequency  areas  that  are  not  relevant  to  the  signal  of  interest  and  have 
 minimal  noise  and  artifacts.  The  aim  is  to  minimise  any  unwanted  noise  and  artifacts  to  obtain  an 
 accurate  representation  of  the  signal.  Figure  4  demonstrates  that  Infomax  produces  smoother  plots 
 compared  to  other  algorithms  when  considering  all  channels,  with  FastICA  following  closely. 
 Moreover, the Infomax algorithm tends to show lower power levels over the frequency spectrum. 

 4.2. Quantitative Analysis of the Algorithms 
 Table  1  summarizes  the  results  of  the  performance  evaluation,  focusing  on  the  Power 

 Spectral  Density  (PSD).  This  table  compares  the  average  PSD  values  from  ten  trials  for  each  signal 
 processing  algorithm.  Additionally,  Figure  5  gives  a  plot  of  SNR  values  of  the  different  algorithms, 
 and  Table  2  provides  a  summary  of  the  Percentage  Root  mean  square  error  Difference  (PRD) 
 evaluations.  These  metrics  are  essential  for  quantitatively  assessing  the  effectiveness  of  the 
 algorithms in improving signal quality and reducing errors during preprocessing. 

 Table 1. Power Spectral Density evaluated for four denoising algorithms 
 SlNo.  Trial  Input Signal  Powerline 

 denoising 
 SWT  Infomax  fastICA  SOBI 

 1  1  4.436e-22  7.278e-25  7.228e-25  1.299e-30  1.413e-22  6.173e-24 
 2  5  4.366e-22  6.991e-25  6.939e-25  1.349e-30  1.413e-22  7.037e-24 
 3  10  4.215e-22  7.239e-25  7.234e-25  1.295e-30  1.413e-22  6.991e-24 
 4  15  4.178e-22  6.840e-25  6.837e-25  1.267e-30  1.413e-22  7.604e-24 
 5  25  4.065e-22  7.427e-25  7.423e-25  1.276e-30  1.413e-22  5.936e-24 
 6  50  3.840e-22  7.157e-25  7.153e-25  1.404e-30  1.413e-22  7.153e-24 
 7  100  3.612e-22  7.216e-25  7.213e-25  1.126e-30  1.413e-22  7.397e-24 
 8  125  3.833e-22  7.985e-25  7.981e-25  1.184e-30  1.413e-22  6.851e-24 
 9  150  3.825e-22  7.886e-25  7.882e-25  1.276e-30  1.413e-22  5.944e-24 
 10  200  3.668e-22  7.860e-25  7.856e-25  1.264e-30  1.413e-22  6.511e-24 
 Average  4.00e-22  7.39e-25  7.37e-25  1.27e-30  1.41e-22  6.76e-24 

 Based  on  the  average  PSD  value  following  the  SWT  application,  it  seems  that  there  is  still  a 
 considerable  amount  of  power  remaining  in  the  frequency  domain.  This  implies  that  physiological 
 artifacts  may  not  have  been  eliminated  by  SWT.  The  Infomax  method  has  the  least  amount  of 
 power  in  the  frequency  domain  and  is  the  most  successful  method  for  eliminating  physiological 
 artifacts,  as  evident  by  the  PSD  value  of  1.27e-30.  Although  the  PSD  value  following  the 
 application  of  FastICA  is  higher  than  that  of  Infomax,  it  is  still  much  lower  than  that  of  SWT.  This 
 means  that  FastICA  is  still  successful  to  an  extent  in  reducing  artifacts  while  significantly  reducing 
 power  as  compared  to  SWT.  SOBI  is  probably  not  as  successful  in  lowering  artifacts,  perhaps  not  as 
 effective  as  Infomax,  as  it  falls  between  the  PSD  values  for  Infomax  and  SWT.  In  conclusion, 
 based  on  the  PSD  values,  Infomax  seems  to  be  the  best  method  for  eliminating  physiological 
 artifacts, resulting in the lowest power in the frequency domain. 

 The  SNR  of  the  input  signal  is  calculated  using  mean  and  standard  deviation  and  the  value 
 obtained  is  2.00.  However,  the  SNR  of  the  signal  after  notch  filtering  is  dropped,  suggesting  that  the 
 filtering  process  may  have  greatly  attenuated  by  removing  certain  frequencies  or  signal  components 
 but  it  likely  eliminated  the  noise.  The  significantly  higher  SNR  following  SWT  indicates  that  the 
 signal  may  have  been  successfully  denoised,  or  separated  from  the  noise.  Infomax  was  found  to 
 have  the  lowest  SNR  value,  indicating  that  it  struggled  to  maintain  signal  quality  while  reducing 
 noise.  FastICA  and  SOBI  have  SNR  ratings  near  1,  indicating  that  while  some  noise  may  still  exist, 
 signal  to  noise  ratio  has  been  roughly  balanced  after  processing.  Although  the  SNR  value  of  SWT  is 
 higher  than  that  of  Infomax,  it  is  still  very  low,  indicating  that  noise  may  remain  a  significant  effect 
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 even  after  optimization.  The  SNR  value  that  has  been  calculated  is  visually  represented  in  Figure  5. 
 The  SNR  values  indicate  that  different  algorithms  may  have  different  levels  of  challenges  when 
 efficiently distinguishing the signal from the noise. 

 Figure 5. Plot of SNR values Vs Trial of Four algorithm 

 Table 2. Estimation of PRD from RMSE values 
 Parameters  SWT  Infomax  fastICA  SOBI 
 RMSE1  1.413  1.415  1.415  1.420 
 RMSE2  1.415  1.414  1.415  1.411 
 PRD(%)  0.14  0.07  0  0.63 

 The  PRD  provides  an  alternative  perspective  on  how  effectively  the  algorithms  eliminate 
 physiological  artifacts.  The  relatively  low  percentage  of  RMSE  inconsistencies  between  Infomax 
 and  FastICA  indicates  that  both  methods  perform  similarly  in  minimizing  the  RMSE.  SWT 
 performs  well,  with  an  RMSE  difference  of  only  0.14  percent,  but  slightly  worse  than  InfoMax, 
 which  is  still  relatively  low.  Infomax,  on  the  other  hand,  outperforms  all  other  methods,  whereas 
 SOBI is the least efficient among them. 

 4.3. Signal Reconstruction from Individual Components 
 The  Reconstruction  of  signals  from  individual  components  is  a  crucial  part  of  signal 

 processing,  especially  after  using  techniques  like  ICA  or  other  decomposition  methods.  During  this 
 process,  the  original  signal  is  reconstructed  from  its  individual  components,  each  representing 
 different  sources  of  information  or  noise.  It  is  important  to  reconstruct  the  signal  properly  to 
 preserve its meaningful features while reducing the effects of artifacts or noise. 

 Infomax  successfully  separates  the  mixed  signals  into  their  statistically  independent  sources; 
 a  component  plot  is  used  to  visualize  the  results  in  Figure  6.  To  achieve  this  separation,  Infomax 
 modifies  the  mixing  matrix  iteratively,  aiming  to  maximize  the  non-Gaussianity  of  the  separated 
 signals.  This  process  helps  identify  statistically  independent  components  and  extract  as  much 
 information as possible from the mixed MEG signals. 
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 (a) 

 (b) 
 Figure 6. Plot of independent components after InfomaxICA – Component15 to Component 21 

 visualization (a) Graphical (b) topographic view 

 Figure  7  gives  the  visual  representation  of  the  reconstructed  signal.  This  gives  researchers  a 
 means  of  verifying  the  separation  of  mixed  signals  into  relevant  sources  and  evaluating  the  accuracy 
 of  the  reconstruction.  Furthermore,  it  facilitates  additional  examination  and  investigation  of  the 
 fundamental mechanisms guiding the observed data. 
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 Figure 7. Graphical illustration of raw data alongside output data, unmixing components, and 
 reconstructed MEG data after Infomax processing of one trial 

 Reconstructed  MEG  signals  using  Infomax  have  graphs  with  smoother  transitions  and 
 greater  signal  characteristic  preservation  than  the  original  MEG  signals.  This  is  so  because  the  goal 
 of  Infomax  is  to  maximise  the  quantity  of  information,  which  frequently  leads  to  a  more  precise 
 separation of separate components. 

 FastICA  separates  mixed  MEG  signals  into  independent  components  by  iteratively 
 calculating  the  directions  of  the  components  in  the  feature  space.  The  algorithm  works  by  assuming 
 that  the  sources  have  non-Gaussian  distributions  and  maximising  the  non-Gaussianity  of  the 
 projections.  To  recover  the  original  MEG  signals,  the  mixing  matrix  obtained  during  the  separation 
 process  is  inverted,  and  its  independent  components  are  multiplied,  similar  to  the  Infomax.  The 
 independent  components  obtained  from  the  FastICA  decomposition  are  shown  in  Figure  8,  together 
 with a graphic depiction of the signal that has been reconstructed. 
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 (a) 

 (b) 
 Figure 8. (a) Plot of independent components from Component 1 to Component 7 acquired through FastICA 
 (b) graphical representation of output data, unmixing components, and reconstructed MEG data following 

 one trial's FastICA processing 

 Figure  8  displays  that  FastICA  can  potentially  recreate  MEG  signals  effectively  but  the 
 resulting  signals  may  have  more  noticeable  fluctuations  or  artifacts  compared  to  the  original  signals. 
 The  accuracy  of  the  reconstruction  is  slightly  lower  with  FastICA  than  with  Infomax.  Infomax  has 
 excelled in situations where noise reduction and clean component isolation are vital. 
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 4.4. Computational Complexity Analysis 
 The  computational  complexity  of  an  algorithm  measures  the  amount  of  computational 

 resources,  such  as  time  or  space,  needed  for  the  quantity  of  its  input.  It  enables  the  evaluation  of 
 various  signal  processing  algorithms  to  determine  the  best  fit  for  real-time  processing  or  large 
 dataset applications. 

 Table 3. Comparison of the computational complexity of the signal processing algorithms used 

 Signal Processing Algorithm  Computational Complexity 
 SWT  O (K.T) 
 SOBI  O (n3 + D.n2.T + D.I.n3) 
 FastICA  O (n3 + I.n2.T) 
 InfomaxICA  O (n3 + I.n2.T) 

 where K: Number of decomposition levels 
 T: Number of samples 
 n: Number of channels 
 D: Number of time delays 
 I: Number of iterations 

 The  computational  cost  of  SOBI  will  increase  significantly  with  a  large  number  of  channels 
 or  time  delays,  whereas  SWT  has  a  linear  complexity  to  the  number  of  decomposition  levels,  K,  and 
 the  signal  length,  T.  The  FastICA  and  Infomax  ICA  algorithms  have  similar  computational 
 complexity,  but  FastICA  usually  runs  faster  in  real-world  applications  due  to  its  more  efficient 
 fixed-point  iteration  technique.  Infomax  ICA  is  particularly  effective  in  handling  complex  signal 
 separation because it can improve the statistical independence of the predicted components. 

 After accounting for all variables, the following conclusions may be drawn: 
 ●  Infomax  is  excellent  at  eliminating  physiological  artifacts  while  maintaining  the  original 

 signal  since  it  consistently  performs  well  across  PSD  and  Percentage  RMSE  difference 
 measurements. 

 ●  Additionally,  FastICA  is  a  formidable  competitor  because  it  demonstrated  a  solid 
 balance between SNR and Percentage RMSE difference. 

 ●  Comparing  SWT  to  the  other  algorithms,  it  performed  comparatively  inferior  across  all 
 parameters. 

 ●  Despite  having  a  somewhat  balanced  SNR,  SOBI's  performance  was  inferior  to  Infomax 
 and FastICA in terms of PSD and Percentage RMSE difference. 

 As  a  result,  Infomax  seems  to  be  the  most  effective  algorithm  among  the  four,  closely 
 followed  by  FastICA,  based  on  the  entirety  of  the  analysis.  The  algorithms  demonstrated  excellent 
 performance  in  removing  physiological  artifacts  while  maintaining  the  integrity  of  the  original 
 signal. 

 4.  Conclusion 
 MEG  is  a  useful  method  for  tracking  the  changing  activity  of  brain  functions.  However, 

 many  artifacts  can  deteriorate  signal  quality.  To  mitigate  the  loss  of  important  information  when 
 these  components  are  removed,  the  denoising  process  aims  to  reduce  the  neural  information  present 
 in  artifactual  components.  Our  analysis  compared  different  denoising  techniques  based  on  Power 
 Spectral  Density  (PSD),  percentage  Root  Mean  Square  Error  difference  (PRD),  and  Signal-to-Noise 
 Ratio  (SNR)  to  determine  their  effectiveness  at  improving  signal  quality.  Our  results  showed  that 
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 Independent  Component  Analysis  (ICA)  methods,  particularly  Infomax  and  FastICA,  performed 
 better  than  other  approaches.  This  work  efficiently  reduces  physiological  and  environmental  noise, 
 thereby  improving  signal  quality  and  facilitating  further  processing  for  neurorehabilitation 
 applications. 

 In  the  future,  there  are  plans  to  address  the  significant  issue  of  head  motion  estimate  and 
 correction  while  acquiring  MEG  data.  This  challenge  poses  a  crucial  barrier  to  understanding  brain 
 dynamics  and  creating  efficient  rehabilitation  strategies  for  neurological  disorders.  By  improving 
 this aspect of data collection, we aim to offer a more robust basis for future research. 
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