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neurorehabilifation offers the potential to improve recovery
and quality of life for stroke survivors. It aims to restore lost
physical and mental abilities through motor and cognitive
therapies. Magnetoencephalography (MEG) signals are a
major advancement in BCI technology as they provide
accurate and consistent assessments of brain activity for
control and interaction applications. MEG is indispensable for
recording the magnetic fields produced in the brain during
motor imagery tasks due to its capability to evaluate cerebral
activity with remarkable temporal resolution. However, one of
the major challenges associated with MEG recording is the
loss of signal quality due to physiological artifacts and
ambient noise. Additionally, the head movement of the
individual during the recording process can result in the
introduction of artifacts into the recorded data, which can
distort the spatial mapping of brain activity. This, in turn, can
Jjeopardize the reliability and accuracy of the results obtained.
This study aims to identify the most effective technigque for
removing artifacts from MEG signals by conducting a
comparative performance analysis of prominent denoising
algorithms, such as Infomax, FastliCA, SOBI, and SWT. The
findings conclude that Infomax is the most effective algorithm
for removing physiological artifacts from a signal while
maintaining the integrity and essential features of the original
data. FastICA was found to be the second most effective
algorithm. Infomax outperformed FastICA in Power Spectral
Density (PSD) and Percentage Root mean square error
Difference (PRD) measurements.

Keywords: magnetoencephalography; signal acquisition,
artifacts; denoising; 1CA

How to cite: Philip, B. S., Chihi, L., Prasad, G., & Hemanth,
J. (2024). Estimation of interferences in
magnetoencephalography (MEG) brain data using intelligent
methods for BCl-based neurorehabilitation applications.
BRAIN: Broad Research in Artificial Intelligence and
Neuroscience, 15(3), 59-77.
https://doi.org/10.70594/brain/15.3/4

©2024 Published by EduSoft Publishing. This is an open access article under the CC BY-NC-ND license &=

59


mailto:berilsusan@karunya.edu.in
https://orcid.org/0000-0001-7603-2517
mailto:ines.chihi@uni.lu
https://orcid.org/0000-0002-6307-909X
mailto:g.prasad@ulster.ac.uk
https://orcid.org/0000-0003-3284-9589
mailto:judehemanth@karunya.edu
https://orcid.org/0000-0002-6091-1880

BRAIN. Broad Research in October 2024
Artificial Intelligence and Neuroscience Volume 15, Issue 3

1. Introduction

Stroke is still one of the most prevalent causes of long-term disability globally (Avan &
Hachinski, 2021). It impairs motor function and makes it difficult for victims to carry out daily
tasks on their own. To enhance patient outcomes, there is a need for innovative approaches to
neurorchabilitation. Thus, the integration of magnetoencephalography (MEG) with brain-computer
interface (BCI) technology has emerged as a potential avenue (Tedesco et al., 2019). MEG is a
non-invasive neuroimaging method that measures magnetic fields produced by brain neuronal
activity. With its great temporal resolution and millisecond precision in capturing brain activity,
MEG has shown itself to be an invaluable tool in neuroscience research (Mellinger et al., 2007).
However, MEG data are frequently tainted by a variety of artifacts generated by measurement
systems and human subjects (Medvedovsky et al., 2007). These artifacts include environmental
noise, as well as physiological signals like muscle activity, heartbeat (Puce, & Hémélédinen, 2017),
and eye movements (Carl et al., 2012). If not properly addressed, these artifacts have the potential
to mask the relevant neural signals, potentially leading to inaccurate interpretations of brain activity.

The primary obstacle encountered in the acquisition of MEG signals is the sensitivity of
MEG systems to artifacts. Ambient noise, a non-physiological artifact that includes electromagnetic
interference from electrical power lines, devices, and even the Earth's magnetic field, is one type of
noise or artifact in signal capture. Controlling these artifacts can be achieved through strict
experimental procedures and precise recording equipment up to a certain point. The MEG signal
may also be distorted by the magnetic fields created by biological artifacts such as cardiac activity,
eye movements, and muscle activity (Fred et al., 2022). Moreover, the MEG signal can become
distorted even by slight head movements made by the patient. It can be challenging to differentiate
these artifacts from real brain activity because they can seem like transient bursts or rhythmic
oscillations in the MEG signal. The removal of artifacts from MEG data is an essential step in the
preprocessing stage. This strives to separate the real brain signals from the interfering artifacts,
improving the data's quality and interpretability.

Powerline interference is a high-frequency noise in the 50-60 Hz range that is a
non-physiological artifact and is typically caused by power supply lines. These can appear as
periodic spikes in the MEG signal that mask the underlying brain activity and reduce the
signal-to-noise ratio (Dattatraya et. al, 2008). The movement of the head while recording might
skew the spatial localization of neural signals making it difficult to pinpoint the precise locations of
brain activity. The eye movements and cardiac activity might add spurious signals to the MEG data,
resulting in inaccurate interpretations of neural activity (Zhang et al., 2021). In recordings that
require motor tasks, muscle activity such as clenching of the jaw or movements of the face may also
interfere with the MEG signal. To ensure accurate interpretation of brain signals during data
analysis, it is crucial to properly address the artifacts that occur during the signal acquisition
process. Researchers employ various advanced techniques to overcome these challenges in MEG
data analysis.

The accuracy of ensuing analysis and interpretations is improved by increasing the
signal-to-noise ratio of MEG data, which is made possible by denoising methods. Some of the
well-known denoising algorithms used in MEG research are the Stationary Wavelet Transform
(SWT), InfoMax, FastICA, and SOBI (Second Order Blind Identification) (Peksa et al., 2023; Teng
et al.,, 2021). SWT is a multiresolution analysis method that divides MEG signals into distinct
frequency bands using wavelet functions. Reconstructing the denoised signal by thresholding the
wavelet coefficients to reduce noise is the main step in signal decomposition using SWT. This
method is effective for adaptively denoising signals with non-stationary features and efficiently
capturing both temporal and frequency information. The importance of Independent Component
Analysis (ICA) in data preprocessing lies in its ability to extract sources of interest even in the
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absence of reference signals (Albera et al., 2012; Haumann et al., 2016). ICA makes use of the
non-Gaussian structure of the data by assuming that the sources are statistically independent.
Although the methods used in the many ICA variations vary, their main objective is to isolate the
underlying independent sources (Mikeld, 2022).

In the field of MEG research, the development of effective methods for removing artifacts is
still crucial. In this work, we evaluated the effectiveness of the wavelet decomposition technique in
conjunction with three ICA algorithms: FastICA, Infomax, and SOBI, in minimizing artifacts. The
basic concept of the SWT is its fixed time-frequency resolution and simultaneous analysis of
signals in the frequency and time domains. It is especially helpful for analyzing non-stationary
MEG signals because of this stationary characteristic. The fundamental idea behind the ICA
technique used here is that signals collected on the scalp are a combination of temporally
independent neurological and artifactual sources (Phothisonothai et al., 2012). This method is
predicated on the idea that potentials from different parts of the brain, the scalp, and other sources
combine linearly. This approach avoids the requirement for reference channels for each artifact
source by utilizing spatial filters developed from ICA techniques (Naresh Kumar, et al. 2012). The
resulting MEG signals are generated by successfully reducing the contributions of the identified
artifacts after independent time courses associated with both brain and artifact sources have been
extracted.

The main objective of the proposed study is to conduct a comprehensive comparison of the
most widely utilized MEG denoising techniques. In addition to evaluating their performance, we
also analyze the impact of these methods on signal quality, aiming to determine the optimal
approach for preserving the integrity of neural data while effectively minimizing artifacts.

2. Proposed Methodology

A typical computational structure for choosing the best MEG signal denoising method is
displayed in Figure 1. In this study, MEG signals from the MEG-based BCI dataset acquired at the
Intelligent Systems Research Centre, Ulster University are used as input in this work (Rathee et al.,
2021). A traditional BCI pattern that involves cognitive imagery (CI) and motor imagery (MI)
activities is used to record the data. These MEG data were recorded from 17 healthy subjects using
a 306-channel Elekta Neuromag system which includes 102 magnetometers and 204 planar
gradiometers. Since the MEG signals are provided in unprocessed form, it is presumed that they are
clean and normalized.

The MEG signals are obtained from a multi-channel system where there is a possibility that
some of the channels may contain bad data. It becomes essential to identify faulty channels in data
processing because failing to do so can negatively impact analysis further down the pipeline. The
process of rejecting faulty data segments involves manually establishing a threshold value. Data is
classified as bad when its peak-to-peak amplitude surpasses this threshold (Gramfort et al., 2014).
To reduce or eliminate power line noise in signal processing, a notch filter operating at a frequency
of 50 Hz is used. Some denoising techniques, including the Stationary Wavelet Transform (SWT),
FastICA, Infomax, and SOBI ICA algorithms, are applied to the preprocessed input signals after
which their efficacy is determined by computing several parameters, such as Power Spectral
Density (PSD), Signal to Noise Ratio (SNR) and Percentage Root mean square Difference (PRD).
The ideal denoising technique is selected based on performance. The denoising methods utilized in
this work will be described in the section that follows.
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Figure 1. Block diagram of proposed methodology

3. Methodology and Explanation

In this section, we outline our approach through three key subsections: Removal of power
line interference, which details techniques for eliminating noise from power lines. Removal of
physiological artifacts, which focuses on methods to identify and remove interference from
physiological sources such as muscle activity and eye movements; and finally, Performance
evaluation, where the criteria and metrics used to assess the effectiveness of the denoising
techniques in preserving signal quality and minimizing artifacts are presented.

3.1 Removal of Power line interference

Power lines, that operate at frequencies of about 50 or 60 Hz, have the potential to interfere
with MEG signals. MEG signals usually carry information over a large range of frequencies, even
those in proximity to the power line interference frequency. To properly assess the brain activity
recorded by the MEG, it is necessary to eliminate this interference. Specifically, a notch filter
mechanism is made to remove power line interference from MEG signals (Leske et al., 2019). Since
the power line operates at the frequency of 50 Hz, a notch filter is specifically made to target this
frequency (Kumar et al., 2021). The notch filter attenuates signals within the range of interest while
maintaining the rest of the frequency spectrum unaltered. In this work, the power line noise
frequencies are selectively suppressed by passing the MEG data via a notch filter. All of the original
frequency content of the filtered signal is retained, except the frequencies that the notch filter
attenuates or eliminates.
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3.2 Removal of Physiological Artifacts

3.2.1 Wavelet-based denoising technique

Decomposing artifactual components using wavelet transform is a frequently used method
for reducing undesired artifacts. The Stationary Wavelet Transform (SWT) effectively removes
artifacts due to its translation invariance making it preferable to both Continuous Wavelet
Transform (CWT) and Discrete Wavelet Transform (DWT) (Zangeneh Souroush et al., 2022).
Non-stationary data can be processed and analyzed mathematically using the SWT approach. It
offers a more versatile representation by accommodating various time-frequency resolutions at
various sizes. Instead of doing decimation, SWT carries out a multiresolution analysis, after which
filters are adjusted to carry out thresholding. The signals generated by the highpass and lowpass
filters have the same length. The signal is split into precise and approximative coefficients at each
level (Kumar et al., 2021).

The original signal is subjected to several high-pass and low-pass filters, obtaining detailed
and approximation coefficients at each level.

The signal is filtered and then downsampled to the next level to provide a multiresolution
representation.

Repetitively applying the steps of filtering, and downsampling to n decomposition levels.

The denoised MEG signal is eventually rebuilt by applying the inverse of SWT after the
noise has been removed.

3.2.2 Blind Source Separation

The term "blind" in signal processing refers to the absence of prior knowledge about the
source signals or the mixing process. Independent component analysis (ICA) is the most commonly
used technique for blind source separation (BSS). The statistical independence of the mixed signals
is a concept that is used by ICA algorithms. By using ICA, the combined signals are divided into
additive, maximally independent subcomponents, each of which represents a different brain source.

A linear relationship can be used to define the ICA model if X is the collected signal
mixture of dimension n and S is taken to be the genuine source signals of the same dimension.

X=AS (1)

Here A is the unknown mixing matrix. The primary problem with this approach is that S and

A are not known. The task is to identify W, the unmixing matrix, such that
Y =WX ()

An n-channel data array is thus converted into an n-dimensional component space using the
ICA. Every temporal component in Y is maximally independent since it contains the least amount
of mutual information (Breuer et al., 2014).

The MEG data in this study was processed using three different ICA algorithms: runica,
FastICA, and Second Order Blind Identification (SOBI). These algorithms have the same goal and
are identical mathematically but the methods used by each algorithm to estimate independence
differ (Sahonero-Alvarez, & Calderon, 2017). Infomax uses a parametric technique to estimate
component probability distributions whereas FastlCA optimizes neg-entropy of component
distributions. SOBI is a second-order technique that depends on temporal correlations in the source
data and makes use of them (Delorme, Sejnowski, & Makeig, 2007).

a) Infomax ICA

Using the Infomax principle, the runica method produces stable decompositions by
arbitrarily separating mixes of independent sources (Popescu, 2021). In Infomax the learning rate is
an important component and it fluctuates during the learning process. The aim is to determine a
learning rate that achieves a balance between precise estimation accuracy and rapid learning.

The following steps are involved in the Infomax ICA algorithm:
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Data preprocessing: After centering the data, X by deducting the mean, the data is
transformed to accomplish whitening, resulting in an identity matrix for the covariance
matrix.

Iterations of ICA: A nonlinearity function is applied to the whitened data. Then
to facilitate independence and non-Gaussianity, iteratively modify the weight matrix by
applying a learning rule.

Normalize the weight matrix.

Examine if the weight matrix has changed between iterations to determine whether
convergence has occurred. The resultant weight matrix should then be used to translate
the whitened data back into the source space.

b) FastICA

FastICA uses a fixed-point iteration strategy, and orthogonal rotation of pre-defined data to
maximize a metric of non-Gaussianity for the rotated components. It is simple to use because it
lacks a learning rate or additional configurable settings (Tharwat, 2018).

The procedures in the FastICA algorithm involve:

e Data Centering: The data matrix X reflecting the observed mixed signals is centered by subtracting
the mean from each column.

e Whitening: Apply whitening to the centered data to create a space where the components are
statistically uncorrelated. This entails determining the eigenvalue decomposition of the covariance
matrix and utilizing a transformation to produce decorrelation.

e Initialize a square weight matrix A with random values that will be adjusted iteratively to find the
independent sources.

e For a predetermined number of iterations or until convergence:

[J Determine the weight matrix A multiplied by the data that has been whitened.

[J The product should be subjected to a non-linear function, usually the hyperbolic tangent
(tanh). Its non-linearity encourages a non-Gaussian behaviour.

[J To maximize non-Gaussianity and independence, adjust the weight matrix using the
computed values.

e Normalize the weight matrix A.

e The unmixing matrix W is composed of the independent components.

¢) Second-order Blind Identification (SOBI)

The second-order statistics-based SOBI approach operates by diagonalizing matrices
concurrently that are connected to a significant spatial representation of the sequences that must be
separated. It seeks to separate the components by jointly diagonalizing several correlation matrices
(Frederic, Rouijel, & Elghazi, 2021).

Estimate the covariance matrix for the data matrix: For the MEG data matrix, X has N
number of sensors, and T samples in each trial. The covariance matrix is calculated as

1 T
P=r XX G)
Form the whitening matrix: The whitening matrix, W is obtained by multiplying the square

: . -1/2 . .
root inverse of the eigenvalues, ATY by the matrix of eigenvectors, R where A and R are

decomposed from P. The whitened data is calculated from this whitened matrix, W, and is given by
D=WX 4)
Estimation of Source Matrix: Multiply the matrix that results from calculating the
cross-products of the whitened data with the whitening matrix, W, to form the source matrix, S.
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3.3. Performance Evaluation

The effectiveness of the various denoising methods is qualitatively examined through visual
examination. Furthermore, we employed four parameters to measure the performance: Percentage
Root mean squared Difference (PRD), Signal-to-noise ratio (SNR), and Power Spectral Density
(PSD).

A measurement of the average difference between the values of the input signal and the
denoised signal is provided by Root Mean Square Error (RMSE). It is often used to assess how
accurate denoising methods are; a lower RMSE denotes greater performance (Mannan, Kamran, &
Jeong, 2018).

xfr ?":1 (g —y)*
RMSE = N (5)

where x; is the i™ input signal, y; is the corresponding denoised signal and N is the number of
channels.

PRD evaluates how similar the input and denoised signals are to one another. It indicates the
total variation between the two signals and is expressed as a percentage.

. . V2
N _ar
\'Z:'zjl:ﬁ!;i'l

PRD = £ (6)
where ¥ is the mean of the input signal.

SNR is used to measure how good a signal is in comparison to the amount of background
noise (Gonzales-Moreno et al., 2014; Jaiswal et al., 216). The power difference between the signal
and noise is commonly used to express it. SNR can be defined mathematically as:

P(s)

SNR = P(1) (7)

where P(s) and P(n) denote the power of the signal and the noise respectively.

Since there is no information about noise in our dataset, the SNR of the input signal is
approximated using the standard deviation. The theoretical noise standard deviation is computed
assuming Gaussian noise, which results in an uncorrelated signal and noise.

5D(i)”

SNR(input) = $P™t)? (8)

where SD(i) and SD(nt) denote the standard deviation of the input signal and theoretical
noise respectively. In the case of output SNR, the noise power is calculated as the mean square error
(MSE) between the input and output signals.

PSD is very helpful in determining the effects of denoising on a signal's frequency
characteristics (Seymour et al., 2022). It is possible to compare the frequency content of the input
and denoised signals by computing the PSD for each. It is estimated by dividing the signal into
overlapping segments, the periodogram for each segment is calculated, and the resultant
periodograms are averaged.

These parameters provide an extensive evaluation of denoising performance by considering
the amplitude, accuracy, symmetry, and frequency properties of the signals.

4. Experimental Results and Discussions

The experiments were performed with the publicly available dataset that included
information from 17 different participants. Every subject completed 200 trials, which consisted of
four different tasks, and the data was gathered from 306 channels for every trial. Each trial is of 7s
duration encompassing both a rest period of 2s and a task period of 5s. These channels yielded 7000
consecutive samples per trial. The dataset comprised a total of two sessions from each participant.
(Rathee et al., 2021). The neural activity captured concurrently from several brain areas is
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represented by these samples. Initially, we looked for defective channels since this dataset was not
preprocessed. After that, notch filters set at a frequency of 5S0Hz were applied to eliminate any
power line interference present in the signal. This study includes input data from all individuals and
provides sample data for visualization.

4.1 Qualitative Analysis

The signal is qualitatively analyzed after notch filtering, as well as on the preprocessed
signals using signal processing algorithms. Additionally, the PSD of the signals is examined to
evaluate the effectiveness of the denoising and preprocessing techniques. This comprehensive
analysis enables a deeper understanding of the improvements in signal quality and noise reduction,
offering insights into the performance of each signal processing method.

10" input data 1 T input data 2

500 1000 1500 2000 2500 3000 3500 4000 4500 S000 ”EI 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a)
| hl | ) ¥ |
WL ooy onon
e I e

Figure 2. (a) Sample input data from channel 1 and channel 2 (of one trial),
(b) corresponding data after post-notch filtering channel 1, channel 2

Figure 2 shows sample input data from two channels and the corresponding filtered data using
a notch filter. A notable observation is that the input data was much more irregular than the filtered
data. The plot of the data seems to be more consistent across different samples after being filtered.
Notch filtering produces a clearer signal free of 50 Hz noise by efficiently attenuating the powerline
interference that is present in the raw MEG signal. It is possible that the filtering process eliminated
certain signal components, such as noise or high-frequency fluctuations, which caused a decrease in
the total signal amplitude. This is demonstrated by the reduction in amplitude observed when
comparing the signal amplitude after filtering to the amplitude before filtering.

The signal following notch filtering is utilized as input for four algorithms—SWT, Infomax,
FastICA, and SOBI—to effectively eliminate physiological artifacts such as cardiac signals, muscle
activity, and eye movements. Figure 3 depicts the processed signals resulting from the application
of the aforementioned denoising algorithms.
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Figure 3. Plots of output signals from two channels- channel 1 and channel 2 (a) after SWT
processing (b) after InfomaxICA (c) after FastICA (d) after SOBI processing

The output graphs of the denoised algorithms indicate that each technique reduces the
amplitude of the input signal to a varying degree. The SWT and SOBI algorithms show an
amplitude reduction in a comparable range whereas FastICA exhibits the least amount of decrease.
Infomax, when compared to the input signal feed, achieves a greater reduction, with amplitudes in
the e-13 range. The output waveform also appears more regular, suggesting that Infomax is
particularly effective at eliminating physiological artifacts and producing a clear signal with low
residual noise.
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Figure 4. Graphical representation of PSD of input MEG signal, signal after applying notch
filter, FastICA, Infomax, SWT, and SOBI processing

The Power Spectral Density (PSD) graph illustrates the distribution of power in the signal
across various frequencies. The denoising algorithm should ideally reduce or minimise the power
associated with noise, while it should preserve or have minimal effect on the power connected with
the signal. At the relevant frequencies, lower PSD values indicate less power.

Figure 4 is a visual representation of a PSD plot, showcasing the frequency-domain data of a
single trial for which a few channels and a limited number of samples are chosen to facilitate clearer
visualization and a better understanding of the data. In the graph, frequency is depicted on the
x-axis, usually measured in hertz (Hz), and power/frequency is represented on the y-axis, measured
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in dB/Hz. For a PSD plot to be considered ideal, it should have a smooth and continuous
distribution with clear peaks that correspond to the frequencies of interest. Additionally, it should
have low power levels in frequency areas that are not relevant to the signal of interest and have
minimal noise and artifacts. The aim is to minimise any unwanted noise and artifacts to obtain an
accurate representation of the signal. Figure 4 demonstrates that Infomax produces smoother plots
compared to other algorithms when considering all channels, with FastICA following closely.
Moreover, the Infomax algorithm tends to show lower power levels over the frequency spectrum.

4.2. Quantitative Analysis of the Algorithms

Table 1 summarizes the results of the performance evaluation, focusing on the Power
Spectral Density (PSD). This table compares the average PSD values from ten trials for each signal
processing algorithm. Additionally, Figure 5 gives a plot of SNR values of the different algorithms,
and Table 2 provides a summary of the Percentage Root mean square error Difference (PRD)
evaluations. These metrics are essential for quantitatively assessing the effectiveness of the
algorithms in improving signal quality and reducing errors during preprocessing.

Table 1. Power Spectral Density evaluated for four denoising algorithms

SINo. | Trial Input Signal | Powerline SWT Infomax fastICA SOBI
denoising

1 1 4.436e-22 7.278e-25 7.228e-25 | 1.299e-30 1.413e-22 [ 6.173e-24
2 5 4.366e-22 6.991e-25 6.939¢-25 | 1.349¢-30 1.413e-22 | 7.037e-24
3 10 4.215e-22 7.239e-25 7.234e-25 | 1.295e-30 1.413e-22 | 6.991e-24
4 15 4.178e-22 6.840e-25 6.837e-25 | 1.267e-30 1.413e-22 | 7.604e-24
5 25 4.065e-22 7.427e-25 7.423e-25 | 1.276e-30 1.413e-22 | 5.936e-24
6 50 3.840e-22 7.157e-25 7.153e-25 | 1.404e-30 1.413e-22 | 7.153e-24
7 100 3.612e-22 7.216e-25 7.213e-25 | 1.126e-30 1.413e-22 [ 7.397e-24
8 125 3.833e-22 7.985e-25 7.981e-25 | 1.184e-30 1.413e-22 | 6.851e-24
9 150 3.825e-22 7.886e-25 7.882e-25 | 1.276e-30 1.413e-22 [ 5.944e-24
10 200 3.668e-22 7.860e-25 7.856e-25 | 1.264e-30 1.413e-22 | 6.511e-24
Average 4.00e-22 7.39e-25 7.37e-25 1.27e-30 1.41e-22 6.76e-24

Based on the average PSD value following the SWT application, it seems that there is still a
considerable amount of power remaining in the frequency domain. This implies that physiological
artifacts may not have been eliminated by SWT. The Infomax method has the least amount of
power in the frequency domain and is the most successful method for eliminating physiological
artifacts, as evident by the PSD value of 1.27e-30. Although the PSD value following the
application of FastICA is higher than that of Infomax, it is still much lower than that of SWT. This
means that FastICA is still successful to an extent in reducing artifacts while significantly reducing
power as compared to SWT. SOBI is probably not as successful in lowering artifacts, perhaps not as
effective as Infomax, as it falls between the PSD values for Infomax and SWT. In conclusion,
based on the PSD values, Infomax seems to be the best method for eliminating physiological
artifacts, resulting in the lowest power in the frequency domain.

The SNR of the input signal is calculated using mean and standard deviation and the value
obtained is 2.00. However, the SNR of the signal after notch filtering is dropped, suggesting that the
filtering process may have greatly attenuated by removing certain frequencies or signal components
but it likely eliminated the noise. The significantly higher SNR following SWT indicates that the
signal may have been successfully denoised, or separated from the noise. Infomax was found to
have the lowest SNR value, indicating that it struggled to maintain signal quality while reducing
noise. FastICA and SOBI have SNR ratings near 1, indicating that while some noise may still exist,
signal to noise ratio has been roughly balanced after processing. Although the SNR value of SWT is
higher than that of Infomayx, it is still very low, indicating that noise may remain a significant effect
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even after optimization. The SNR value that has been calculated is visually represented in Figure 5.
The SNR values indicate that different algorithms may have different levels of challenges when
efficiently distinguishing the signal from the noise.

SNR Values vs Trial for All Algorithms

1.0x10% 1
8.0x10 1 O SWT
O  Infomax
fastiCA
SOBI
—~6.0x10" |
&)
o
=
»n 1L
4.0x10
2.0x107" |
o] - 4 o o
0.0x10% L L = L L
1 2 3 4 5

Trial Number
Figure 5. Plot of SNR values Vs Trial of Four algorithm

Table 2. Estimation of PRD from RMSE values

Parameters | SWT Infomax fastICA SOBI
RMSE1 1.413 1.415 1.415 1.420
RMSE2 1.415 1.414 1.415 1.411
PRD(%) 0.14 0.07 0 0.63

The PRD provides an alternative perspective on how effectively the algorithms eliminate
physiological artifacts. The relatively low percentage of RMSE inconsistencies between Infomax
and FastICA indicates that both methods perform similarly in minimizing the RMSE. SWT
performs well, with an RMSE difference of only 0.14 percent, but slightly worse than InfoMax,
which is still relatively low. Infomax, on the other hand, outperforms all other methods, whereas
SOBI is the least efficient among them.

4.3. Signal Reconstruction from Individual Components

The Reconstruction of signals from individual components is a crucial part of signal
processing, especially after using techniques like ICA or other decomposition methods. During this
process, the original signal is reconstructed from its individual components, each representing
different sources of information or noise. It is important to reconstruct the signal properly to
preserve its meaningful features while reducing the effects of artifacts or noise.

Infomax successfully separates the mixed signals into their statistically independent sources;
a component plot is used to visualize the results in Figure 6. To achieve this separation, Infomax
modifies the mixing matrix iteratively, aiming to maximize the non-Gaussianity of the separated
signals. This process helps identify statistically independent components and extract as much
information as possible from the mixed MEG signals.
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Figure 6. Plot of independent components after InfomaxICA — Componentl5 to Component 21
visualization (a) Graphical (b) topographic view

Figure 7 gives the visual representation of the reconstructed signal. This gives researchers a
means of verifying the separation of mixed signals into relevant sources and evaluating the accuracy
of the reconstruction. Furthermore, it facilitates additional examination and investigation of the
fundamental mechanisms guiding the observed data.
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Figure 7. Graphical illustration of raw data alongside output data, unmixing components, and
reconstructed MEG data after Infomax processing of one trial

Reconstructed MEG signals using Infomax have graphs with smoother transitions and
greater signal characteristic preservation than the original MEG signals. This is so because the goal
of Infomax is to maximise the quantity of information, which frequently leads to a more precise
separation of separate components.

FastICA separates mixed MEG signals into independent components by iteratively
calculating the directions of the components in the feature space. The algorithm works by assuming
that the sources have non-Gaussian distributions and maximising the non-Gaussianity of the
projections. To recover the original MEG signals, the mixing matrix obtained during the separation
process is inverted, and its independent components are multiplied, similar to the Infomax. The
independent components obtained from the FastiICA decomposition are shown in Figure 8, together

with a graphic depiction of the signal that has been reconstructed.
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Figure 8. (a) Plot of independent components from Component 1 to Component 7 acquired through FastICA
(b) graphical representation of output data, unmixing components, and reconstructed MEG data following

one trial’s FastICA processing

Figure 8 displays that FastICA can potentially recreate MEG signals effectively but the

resulting signals may have more noticeable fluctuations or artifacts compared to the original signals.
The accuracy of the reconstruction is slightly lower with FastICA than with Infomax. Infomax has
excelled in situations where noise reduction and clean component isolation are vital.
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4.4. Computational Complexity Analysis

The computational complexity of an algorithm measures the amount of computational
resources, such as time or space, needed for the quantity of its input. It enables the evaluation of
various signal processing algorithms to determine the best fit for real-time processing or large
dataset applications.

Table 3. Comparison of the computational complexity of the signal processing algorithms used

Signal Processing Algorithm Computational Complexity
SWT O (K.T)

SOBI O (n3 + D.n2.T + D.1.n3)
FastICA O (n3 +1.n2.T)
InfomaxICA O (n3 +1.n2.T)

where K: Number of decomposition levels
T: Number of samples
n: Number of channels
D: Number of time delays
I: Number of iterations

The computational cost of SOBI will increase significantly with a large number of channels
or time delays, whereas SWT has a linear complexity to the number of decomposition levels, K, and
the signal length, T. The FastICA and Infomax ICA algorithms have similar computational
complexity, but FastiICA usually runs faster in real-world applications due to its more efficient
fixed-point iteration technique. Infomax ICA is particularly effective in handling complex signal
separation because it can improve the statistical independence of the predicted components.

After accounting for all variables, the following conclusions may be drawn:

e Infomax is excellent at eliminating physiological artifacts while maintaining the original
signal since it consistently performs well across PSD and Percentage RMSE difference
measurements.

e Additionally, FastICA is a formidable competitor because it demonstrated a solid
balance between SNR and Percentage RMSE difference.

e Comparing SWT to the other algorithms, it performed comparatively inferior across all
parameters.

e Despite having a somewhat balanced SNR, SOBI's performance was inferior to Infomax
and FastICA in terms of PSD and Percentage RMSE difference.

As a result, Infomax seems to be the most effective algorithm among the four, closely
followed by FastICA, based on the entirety of the analysis. The algorithms demonstrated excellent
performance in removing physiological artifacts while maintaining the integrity of the original
signal.

4. Conclusion

MEG is a useful method for tracking the changing activity of brain functions. However,
many artifacts can deteriorate signal quality. To mitigate the loss of important information when
these components are removed, the denoising process aims to reduce the neural information present
in artifactual components. Our analysis compared different denoising techniques based on Power
Spectral Density (PSD), percentage Root Mean Square Error difference (PRD), and Signal-to-Noise
Ratio (SNR) to determine their effectiveness at improving signal quality. Our results showed that
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Independent Component Analysis (ICA) methods, particularly Infomax and FastICA, performed
better than other approaches. This work efficiently reduces physiological and environmental noise,
thereby improving signal quality and facilitating further processing for neurorehabilitation
applications.

In the future, there are plans to address the significant issue of head motion estimate and
correction while acquiring MEG data. This challenge poses a crucial barrier to understanding brain
dynamics and creating efficient rehabilitation strategies for neurological disorders. By improving
this aspect of data collection, we aim to offer a more robust basis for future research.
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