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Abstract: Employing machine learning algorithms in the
medical field has proven successful for some time now.
Mostly computer vision techniques have been applied to
medical images, while medical sound data has been
somewhat overlooked. By using electronic stethoscopes, it is
now possible to process both heartbeats and lung sounds.
While some products are available for detecting anomalies
in heartbeats, addressing lung-related anomalies presents a
more intricate challenge. Applying a deep learning
approach is hindered by insufficient data. Although some
datasets do exist, the size and diversity of the data are too
small for comprehensive analysis. This paper introduces a
novel technique for detecting anomalies in lung sounds:
first by combining two datasets, second by automatically
segmenting each sound into respiratory cycles, and third by
employving GFCCs as sound features.
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1. Introduction

Sound anomaly detection has received significant attention recently, particularly in
industrial applications for predictive maintenance of equipment and automatic quality assurance of
products, showing promising results. In the medical field, computer vision has predominantly been
utilized for tasks such as tumor and mass detection in medical images like CT scans and ultrasound
images, while other areas where artificial intelligence could be beneficial have been overlooked.
When considering sound within the medical activity, the stethoscope comes to mind. Owned and
used by every medical doctor to listen to heartbeats or respiratory sounds, the stethoscope has not
been left out by the progress of modern technology, giving rise to electronic versions.

Some modern devices make it possible for physicians to record the sounds they hear,
opening the door to automated sound processing. Some electronic stethoscopes already integrate
heartbeat anomaly detection. However, in the case of respiratory sounds, the problem is more
complex due to the various events occurring during respiration, typically at low frequencies.
Therefore, automatic anomaly detection in respiratory sounds becomes a challenging problem, with
deep learning having the best chance of offering promising results. However, deep learning
necessitates a substantial amount of data for effective training, which is currently lacking. Although
some datasets are available, they contain insufficient data for comprehensive model training.

Therefore, this paper proposes a solution where two datasets, containing different data
represented in distinct ways, are combined. The objective is to unify the data into a standardized
format, addressing the challenge of insufficient training data for deep learning in the context of
automatic respiratory sound anomaly detection.

2. Related work

With the subject being a task in a competition, some work has been done during the ICBHI
Challenge event. The paper (Siddhartha, Tom, Kwatra, & Jain, 2021) introduces RespiraNET, a
neural network designed for anomaly detection in respiratory sounds. To overcome the challenge of
limited data, the authors suggest various methods of data augmentation, along with a transfer
learning technique. Their experiments yielded promising results in two-class classification,
achieving an ICBHI score of 77%, calculated as the mean of sensitivity and specificity.

Another paper (Dar, Srivastava, & Mishra, Lung anomaly detection from respiratory sound
database (sound signals), 2023) discusses the use of two datasets in the development of a lung
sound anomaly detection algorithm. Upon closer examination of the datasets, they appear to be
remarkably similar, if not identical, despite being downloaded from different sources. Disregarding
this aspect, the authors introduce a complex method that involves extracting more than ten features
and training a 9-layer model. Their algorithm’s performance, measured in terms of True Positive
Rate (TPR), True Negative Rate (TNR), and Testing Accuracy, yields the best results with
corresponding rates of 0.963, 0.932, and 0.948. The same authors also published another technique
(Dar, Srivastava, & Lone, Spectral features and optimal Hierarchical attention networks for
pulmonary abnormality detection from the respiratory sound signals, 2022) using Bark Frequency
Cepstral Coefficients and Hierarchical Attention Networks using the same two datasets.

Most researchers typically treat this task as a classification problem with multiple classes,
assuming sufficient data availability for each class. An anomaly detection approach is taken by the
authors in this paper (Cozzatti, Simonetta, & Ntalampiras, 2022). They extracted MFCCs from the
ICBHI Database (Rocha, et al., 2019) and utilized an autoencoder for classification. Notably, they
adopted a “weakly-supervised” method, training the model only on normal recordings. In this case,
the best True Positive Rate (TPR), True Negative Rate (TNR), and accuracy (ACC) achieved were
0.58, 0.61, and 0.60, respectively.

A comprehensive analysis was conducted by the authors of this paper (Pham, Phan,
Palaniappan, Mertins, & McLoughlin, 2021). To determine the most effective feature, various
spectrograms such as Log-Mel, Gamma, or CQT were extracted from the sound. These
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spectrograms were then divided into fixed-sized patches and input into a Convolutional-Dense
Neural Network (C-DNN) based model. The optimal results were observed with the Log-Mel and
Gamma spectrograms, with a slight advantage in favor of Gamma in the two-category classification
of respiratory cycles. With the newly discovered information, the authors propose a robust
framework. When applied to a respiratory cycle anomaly detection task, this framework achieves a
Sensitivity, Specificity, and ICBHI Score of 0.90, 0.78, and 0.84.

The paper (Sengupta, Sahidullah, & Saha, 2016) demonstrates how cepstral-based statistical
features perform better than wavelet-based features, while (Manzoor, et al., 2020) focuses on
getting better results using a variation of a recurrent neural network. Also focusing on improving
the learning model, (Fernando, Sridharan, Denman, Ghaemmaghami, & Fookes, 2022) use a
temporal convolution network for the job. (Senthilnathan, Deshpande, & Rai, 2020) have a slightly
different approach, trying to detect anomalies in breathing sounds directly recorded with a
smartphone, not a professional electronic stethoscope. Also, tackling the problem of insufficient
data for training, (Le, Bang, Le, & Choo, 2023) propose a lightweight model that employs a
technique called feature fool exploitation to detect the anomalies.

3. Datasets used in the study

3.1. ICBHI 2017 Challenge Database

The ICBHI dataset was created for the scientific challenge organized at the International
Conference on Biomedical Health Informatics 2017 (ICBHI 2017 Challenge, n.d.). It is a
respiratory sound database containing audio samples collected by two research teams, one from
Portugal and the other from Greece. The sounds were recorded using either electronic stethoscopes
from various manufacturers or a microphone array. Recordings were obtained from 126 patients and
had a total duration of 5.5 hours. Each recording varies in duration, ranging from 10 to 90 seconds.
Respiratory experts labeled the data, establishing respiratory cycles and identifying the presence of
events such as crackles and wheezes. This information is stored in a separate annotation file for
each recording. The recording setup details, including information about the device, stethoscope
position, and patient number, are encoded in the file names.

Additionally, a separate file provides the diagnosis for each patient. The dataset
encompasses both healthy patients and those with conditions such as Asthma, Pneumonia,
Bronchiectasis, Chronic Obstructive Pulmonary Disease, Lower Respiratory Tract Infection, or
Upper Respiratory Tract Infection. While demographic information for each patient is available in
the dataset, it is not utilized in this paper. (Rocha, et al., 2019)

3.2. A dataset of lung sounds

Without having a particular name, recordings from 112 patients are included in this dataset,
containing only one recording per subject (Fraiwan, Fraiwan, Khassawneh, & Ibnian, 2021). The
patients are of various ages, with an almost equal number of men and women, and detailed
demographic information is provided. Each recording varies in length, ranging in this case from 5 to
30 seconds.

For every recording, three types of filters are available. In this instance, we exclusively
processed recordings with diaphragm mode filtration, as it is the most commonly used by doctors in
their daily activities. The data is labeled, providing information about the presence of respiratory
events, such as crackles and wheezes, as well as the final diagnosis.

Among the patients, 35 are healthy subjects, while 77 have been diagnosed with conditions
including asthma, heart failure, pneumonia, bronchitis, pleural effusion, lung fibrosis, or COPD. In
contrast to the ICBHI dataset, the respiratory cycles are not determined in this case. Both the
annotation data and the setup details for each patient are encoded in the file names and also
structured in a separate sheet. A single type of recording device was used specifically the Littmann
3200 Electronic Stethoscope. (Fraiwan, Fraiwan, Khassawneh, & Ibnian, 2021)
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4. Preprocessing

In this paper, our primary focus is to automatically determine whether a person is healthy or
sick. For this purpose, we needed to extract from the annotations only the information relevant to
us. We processed the annotation files from each dataset, specifically extracting the diagnosis
information. Patients labeled as Healthy or Normal were assigned a label of 0, while those
diagnosed with any disease were assigned a label of 1.

Having recordings from two datasets and various recording devices, the sound data was
recorded with different sample rates, ranging from 4kHz to 44.1 kHz. Consequently, we
standardized each recording by resampling it to a rate of 4kHz. Additionally, each sound was
divided into frames, with each frame containing 1024 samples with an overlap of 512 samples.

Sound segmentation plays a very important role in the success of our proposed method. On
one hand, even with the combination of two datasets, the available data for training a neural
network remains limited. By breaking down the recordings into smaller segments, we generate
numerous smaller samples for training, as opposed to having fewer larger samples. This helps in the
training of the neural network. On the other hand, each recording varies in length, ranging from 5
seconds to 90 seconds. Handling the recordings as they are is impractical, if not impossible, so
segmenting them into smaller units provides uniformly sized samples for training.

The easiest way to segment each recording involves arbitrarily setting a segment length,
calculating the duration of each recording, and dividing it by the chosen length, leaving out the rest
of the division. However, with this method, there is a risk of splitting recordings in the middle of
inspiration or expiration.

A more effective approach is to segment each recording into respiratory cycles. Although
one of the datasets already includes this information, we believe that automatically segmenting
respiratory recordings into cycles is essential. This is particularly important as our research aims to
develop a generic algorithm capable of detecting anomalies in any respiratory audio data. Moreover,
manually determined cycles have different lengths, which will make it difficult for us to process
them later on. Nevertheless, we used this information to validate our automatic segmentation.
Collaborating with a physician and using the available annotations, we established that the average
duration of a complete respiratory cycle is 2.5 seconds.

The cycles are not readily visible or easily determinable in the classic waveform
representation of the sound (Figure 1(a)) but can be distinguished in the power spectrogram, as
shown in Figure 1(b).
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Figure 1. Respiratory sound representation with segmentation

Therefore, we employed the spectral centroid, a frequency domain feature in sound that
indicates the so-called “center of gravity” of the magnitude spectrum. In other words, it shows the
frequency band with the most energy. We calculate the spectral centroid for each frame ¢, doing
essentially a weighted mean of the frequencies, where the weights are the magnitude of a certain
frequency bin (Constantinescu & Brad, 2023), as expressed in the following equation (1):

5 m, (n)n
sc,= 25 (1)

N
5 m ()

The maximum values of the spectral centroid indicate the moments with the most energy in
sound, which, in our case, correspond to the respiratory cycles. Upon observation, we noted that the
peaks are not situated in the middle of the respiratory cycles but rather approximately 0.8 seconds
after the start of inspiration and 1.7 seconds before the end of expiration. Using these established
values, we extract the 2.5-second respiratory cycle around each spectral centroid peak. In Figure
1(c), a visual representation of the calculated spectral centroid, the continuous green vertical line
indicates the start of the respiratory cycle, while the dashed red vertical line marks the end. If a
spectral centroid peak is too close to the start or end of the recording, we exclude it, as it may result
in an incomplete cycle that could disrupt our algorithm later. Additionally, since every patient is
different, the respiratory rate is different, resulting in different values for the length of the
respiratory cycles. We maintain our established 2.5-second cycle length. This may lead to some
cycles overlapping slightly, a situation that will not lead to any issues for the future usage of a
machine learning algorithm.
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5. Experimental results

5.1. Feature extraction

After preprocessing the recordings and annotations, we ended up with a set of data vectors,
each representing a sound with a fixed length of 2.5 seconds. Each vector contains one respiratory
cycle and is labeled as 1 if it originates from a sick person, or 0 if it is from a healthy individual.

Despite opting for a deep learning approach in this experiment, which theoretically doesn’t
need feature extraction, the current state of the art suggests that, in the case of sound, better results
are achieved by extracting Mel Frequency Cepstral Coefficients (MFCCs) from the sound and
training the model with them (Huang, et al., 2023). Taking a step further, we are using Gammatone
Frequency Cepstral Coefficients (GFCCs), a set of coefficients that have demonstrated excellent
results in speech recognition (Liu, 2018). GFCCs are particularly useful for speech and music
processing, as they can simulate the characteristics of the auditory system, being particularly
effective in capturing the fine spectral details of the speech sounds that are important for speech
processing. They have been used in various audio and speech processing tasks such as speech
recognition, speech synthesis, and speaker identification. These coefficients have the potential to
achieve similar success in our case due to their effectiveness in capturing the fine spectral details of
the sounds.

GFCCs are a type of sound representation similar to MFCCs. While MFCCs are obtained by
applying a Mel filter bank to convert the linear frequency scale of the signal to the Mel-scale,
GFCCs employ Gammatone filter banks to be applied to the sound. This choice aims to better
replicate how the human auditory system perceives sound. A Gammatone filter is designed to
mimic the spectral shape of the human auditory system, simulating the behavior of the basilar
membrane in the inner ear. This membrane is responsible for analyzing the frequency content of
sounds.

We implemented the GFCCs feature extraction relying on the Spafe implementation (Malek,
et al., 2023) (Malek, Spafe: Simplified python audio features extraction, 2023) and following these
steps (Jeevan, Dhingra, Hanmandlu, & Panigrahi, 2017):

1. The power spectrum of the signal is calculated.

2. The power spectrum is multiplied by the Gammatone filter bank.

3. A non-linear rectification is performed on the absolute value of the signal using a root
cubic operation.

4. Finally, the Discrete cosine transform (DCT) is applied.

We calculate the GFCCs maintaining the sample rate and the framing parameters from the
preprocessing step, with a number of 20 ceps, resulting in a coefficient matrix for each respiratory
cycle. All resulting matrices have the same dimensions and are prepared to be used for training the
model.

5.2. Experiment description

As previously mentioned, we merged the two available datasets. Next, we want to divide the
combined dataset into three primary subsets: the training set, the testing set, and the prediction set.

Right from the beginning, we randomly selected 4 healthy patients and 4 patients with a
respiratory condition from both of the original datasets to constitute the prediction set. These
individuals are excluded from the dataset throughout the entire process and are only used at the end
to make predictions about them. The remaining dataset is further divided into training and testing,
with a ratio of 70/30.

Although the biggest challenge in general anomaly detection lies in achieving satisfactory
results through an unsupervised approach, as anomalous data is challenging to record (for instance,
in the case of industrial machines where anomalies in functionality occur rarely and at unpredictable
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times), we believe a supervised approach is more fitting and realistic for this specific task. This is
because most patients seeking medical assistance are indeed ill. Consequently, the recording of
anomalous lung sounds does not represent a significant problem and it would be unfortunate not to
use them for training purposes.

Having prepared the data for training, we designed a deep-learning model for our neural
network. As this paper is mainly focused on the preprocessing steps and the features that we extract
from the sound, we went for a simple deep-learning architecture. The model is sequential and
features one Flatten input layer, that converts the multidimensional input data to a one-dimensional
array. The next three hidden layers are Dense layers with 512, 256 respectively 64 units, activated
by the RELU function. Finally, the output layer is also a dense one, activated by the sigmoid
function, since we are dealing with a binary classification problem. The model underwent
optimization using the Adam optimizer, as for calculating the loss we used the binary-cross entropy
function. We trained the network for one hundred epochs.

5.3. Results
With the model trained, it is time to use it for predictions on new, previously unseen data,
using the 8 patients that we initially excluded from the dataset. After subjecting their recordings to
the same preprocessing steps, we obtained a total of 219 respiratory cycles. Our previously trained
model correctly predicted the class for 212 of them and incorrectly predicted 7. If we circle back
from respiratory cycles to patients and establish a patient’s class based on the majority vote of its
respiratory cycles, we achieve a 100% correct prediction rate for these 8 patients.
To facilitate comparison with other proposed methods addressing this problem, we used the
same four metrics that commonly appear in other papers:
« TPR — True positive rate (Sensitivity)
« TNR — True negative rate (Specificity)
« Accuracy
« ICBHI Score calculated as follows (2):

ICBHIS =
()

Table 1 presents the results both per cycle and per patient using the aforementioned metrics.

TPR+TNR
2

Table 1: Prediction results per cycle and per patient, compared to other methods

Method TPR TNR ACC | ICBHIS
(Sensitivity) (Specificity)

RespireNet[1] 0.81 0.73 - 0.77
FrwCSO[2] 0.96 0.93 0.94 0.94
VAE[4] 0.58 0.61 0.60 0.59
CNN-MokE]|6] 0.90 0.78 - 0.84
QOurs(per cycle) 1.00 0.68 0.96 0.84
Ours(per patient) 1.00 1.00 1.00 1.00

6. Limits and Discussions

The relatively lower True Negative Rate (TNR) can be attributed to the dataset’s imbalance,
which has two primary causes. Firstly, grouping all diseases into one abnormal class led to a larger
number of sick patients than healthy ones. Secondly, recordings from healthy patients are typically
shorter than those from sick patients. This discrepancy may arise because physicians tend to verify
the events they hear by placing the stethoscope in multiple locations on the patient’s body or by
listening for a longer time, resulting in more and longer recordings. Consequently, this leads to a
higher number of respiratory cycles for the specific patient. To address this issue, data
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augmentation, for artificially generating more normal samples, could prove to be a potential
solution. In comparison to other methods, our approach demonstrates superior outcomes. While the
FRWCSO method closely resembles our results, the ambiguity of the dataset casts doubts on the
relevance of their findings.

7. Conclusions

The primary objective of this research is to enhance respiratory sound anomaly detection.
Our first contribution involves merging two distinct datasets and improving the deep learning
model’s performance by training it on a bigger dataset. Unlike most experiments that use a single
dataset, our approach reflects a more realistic scenario. By combining datasets, we offer a more
generic solution, aligning with our ultimate goal of deploying a lung sound anomaly detection
system for use in the daily practices of healthcare professionals. The second major contribution lies
in the automatic segmentation of recordings into respiratory cycles. Beyond helping in data
preparation for training, this step also contributes to the development of a generic solution. While
manual labeling might be more accurate, it is impractical for daily use. Lastly, utilizing Gammatone
Frequency Cepstral Coefficients (GFCCs), a proven sound feature in speech processing, as a
representation for our lung sound recordings, has a positive impact on the final results. The
integration of these three improvements, combined with insights from previous research, has driven
our algorithm to the promising results presented with relatively low complexity, marking a
significant step toward a generic respiratory sound anomaly detection system.
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