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 1. Introduction 
 Sound  anomaly  detection  has  received  significant  attention  recently,  particularly  in 

 industrial  applications  for  predictive  maintenance  of  equipment  and  automatic  quality  assurance  of 
 products,  showing  promising  results.  In  the  medical  field,  computer  vision  has  predominantly  been 
 utilized  for  tasks  such  as  tumor  and  mass  detection  in  medical  images  like  CT  scans  and  ultrasound 
 images,  while  other  areas  where  artificial  intelligence  could  be  beneficial  have  been  overlooked. 
 When  considering  sound  within  the  medical  activity,  the  stethoscope  comes  to  mind.  Owned  and 
 used  by  every  medical  doctor  to  listen  to  heartbeats  or  respiratory  sounds,  the  stethoscope  has  not 
 been left out by the progress of modern technology, giving rise to electronic versions. 

 Some  modern  devices  make  it  possible  for  physicians  to  record  the  sounds  they  hear, 
 opening  the  door  to  automated  sound  processing.  Some  electronic  stethoscopes  already  integrate 
 heartbeat  anomaly  detection.  However,  in  the  case  of  respiratory  sounds,  the  problem  is  more 
 complex  due  to  the  various  events  occurring  during  respiration,  typically  at  low  frequencies. 
 Therefore,  automatic  anomaly  detection  in  respiratory  sounds  becomes  a  challenging  problem,  with 
 deep  learning  having  the  best  chance  of  offering  promising  results.  However,  deep  learning 
 necessitates  a  substantial  amount  of  data  for  effective  training,  which  is  currently  lacking.  Although 
 some datasets are available, they contain insufficient data for comprehensive model training. 

 Therefore,  this  paper  proposes  a  solution  where  two  datasets,  containing  different  data 
 represented  in  distinct  ways,  are  combined.  The  objective  is  to  unify  the  data  into  a  standardized 
 format,  addressing  the  challenge  of  insufficient  training  data  for  deep  learning  in  the  context  of 
 automatic respiratory sound anomaly detection. 

 2. Related work 
 With  the  subject  being  a  task  in  a  competition,  some  work  has  been  done  during  the  ICBHI 

 Challenge  event.  The  paper  (Siddhartha,  Tom,  Kwatra,  &  Jain,  2021)  introduces  RespiraNET,  a 
 neural  network  designed  for  anomaly  detection  in  respiratory  sounds.  To  overcome  the  challenge  of 
 limited  data,  the  authors  suggest  various  methods  of  data  augmentation,  along  with  a  transfer 
 learning  technique.  Their  experiments  yielded  promising  results  in  two-class  classification, 
 achieving an ICBHI score of 77%, calculated as the mean of sensitivity and specificity. 

 Another  paper  (Dar,  Srivastava,  &  Mishra,  Lung  anomaly  detection  from  respiratory  sound 
 database  (sound  signals),  2023)  discusses  the  use  of  two  datasets  in  the  development  of  a  lung 
 sound  anomaly  detection  algorithm.  Upon  closer  examination  of  the  datasets,  they  appear  to  be 
 remarkably  similar,  if  not  identical,  despite  being  downloaded  from  different  sources.  Disregarding 
 this  aspect,  the  authors  introduce  a  complex  method  that  involves  extracting  more  than  ten  features 
 and  training  a  9-layer  model.  Their  algorithm’s  performance,  measured  in  terms  of  True  Positive 
 Rate  (TPR),  True  Negative  Rate  (TNR),  and  Testing  Accuracy,  yields  the  best  results  with 
 corresponding  rates  of  0.963,  0.932,  and  0.948.  The  same  authors  also  published  another  technique 
 (Dar,  Srivastava,  &  Lone,  Spectral  features  and  optimal  Hierarchical  attention  networks  for 
 pulmonary  abnormality  detection  from  the  respiratory  sound  signals,  2022)  using  Bark  Frequency 
 Cepstral Coefficients and Hierarchical Attention Networks using the same two datasets. 

 Most  researchers  typically  treat  this  task  as  a  classification  problem  with  multiple  classes, 
 assuming  sufficient  data  availability  for  each  class.  An  anomaly  detection  approach  is  taken  by  the 
 authors  in  this  paper  (Cozzatti,  Simonetta,  &  Ntalampiras,  2022).  They  extracted  MFCCs  from  the 
 ICBHI  Database  (Rocha,  et  al.,  2019)  and  utilized  an  autoencoder  for  classification.  Notably,  they 
 adopted  a  ”weakly-supervised”  method,  training  the  model  only  on  normal  recordings.  In  this  case, 
 the  best  True  Positive  Rate  (TPR),  True  Negative  Rate  (TNR),  and  accuracy  (ACC)  achieved  were 
 0.58, 0.61, and 0.60, respectively. 

 A  comprehensive  analysis  was  conducted  by  the  authors  of  this  paper  (Pham,  Phan, 
 Palaniappan,  Mertins,  &  McLoughlin,  2021).  To  determine  the  most  effective  feature,  various 
 spectrograms  such  as  Log-Mel,  Gamma,  or  CQT  were  extracted  from  the  sound.  These 
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 spectrograms  were  then  divided  into  fixed-sized  patches  and  input  into  a  Convolutional-Dense 
 Neural  Network  (C-DNN)  based  model.  The  optimal  results  were  observed  with  the  Log-Mel  and 
 Gamma  spectrograms,  with  a  slight  advantage  in  favor  of  Gamma  in  the  two-category  classification 
 of  respiratory  cycles.  With  the  newly  discovered  information,  the  authors  propose  a  robust 
 framework.  When  applied  to  a  respiratory  cycle  anomaly  detection  task,  this  framework  achieves  a 
 Sensitivity, Specificity, and ICBHI Score of 0.90, 0.78, and 0.84. 

 The  paper  (Sengupta,  Sahidullah,  &  Saha,  2016)  demonstrates  how  cepstral-based  statistical 
 features  perform  better  than  wavelet-based  features,  while  (Manzoor,  et  al.,  2020)  focuses  on 
 getting  better  results  using  a  variation  of  a  recurrent  neural  network.  Also  focusing  on  improving 
 the  learning  model,  (Fernando,  Sridharan,  Denman,  Ghaemmaghami,  &  Fookes,  2022)  use  a 
 temporal  convolution  network  for  the  job.  (Senthilnathan,  Deshpande,  &  Rai,  2020)  have  a  slightly 
 different  approach,  trying  to  detect  anomalies  in  breathing  sounds  directly  recorded  with  a 
 smartphone,  not  a  professional  electronic  stethoscope.  Also,  tackling  the  problem  of  insufficient 
 data  for  training,  (Le,  Bang,  Le,  &  Choo,  2023)  propose  a  lightweight  model  that  employs  a 
 technique called feature fool exploitation to detect the anomalies. 

 3. Datasets used in the study 

 3.1.  ICBHI 2017 Challenge Database 
 The  ICBHI  dataset  was  created  for  the  scientific  challenge  organized  at  the  International 

 Conference  on  Biomedical  Health  Informatics  2017  (ICBHI  2017  Challenge,  n.d.).  It  is  a 
 respiratory  sound  database  containing  audio  samples  collected  by  two  research  teams,  one  from 
 Portugal  and  the  other  from  Greece.  The  sounds  were  recorded  using  either  electronic  stethoscopes 
 from  various  manufacturers  or  a  microphone  array.  Recordings  were  obtained  from  126  patients  and 
 had  a  total  duration  of  5.5  hours.  Each  recording  varies  in  duration,  ranging  from  10  to  90  seconds. 
 Respiratory  experts  labeled  the  data,  establishing  respiratory  cycles  and  identifying  the  presence  of 
 events  such  as  crackles  and  wheezes.  This  information  is  stored  in  a  separate  annotation  file  for 
 each  recording.  The  recording  setup  details,  including  information  about  the  device,  stethoscope 
 position, and patient number, are encoded in the file names. 

 Additionally,  a  separate  file  provides  the  diagnosis  for  each  patient.  The  dataset 
 encompasses  both  healthy  patients  and  those  with  conditions  such  as  Asthma,  Pneumonia, 
 Bronchiectasis,  Chronic  Obstructive  Pulmonary  Disease,  Lower  Respiratory  Tract  Infection,  or 
 Upper  Respiratory  Tract  Infection.  While  demographic  information  for  each  patient  is  available  in 
 the dataset, it is not utilized in this paper. (Rocha, et al., 2019) 

 3.2. A dataset of lung sounds 
 Without  having  a  particular  name,  recordings  from  112  patients  are  included  in  this  dataset, 

 containing  only  one  recording  per  subject  (Fraiwan,  Fraiwan,  Khassawneh,  &  Ibnian,  2021).  The 
 patients  are  of  various  ages,  with  an  almost  equal  number  of  men  and  women,  and  detailed 
 demographic  information  is  provided.  Each  recording  varies  in  length,  ranging  in  this  case  from  5  to 
 30 seconds. 

 For  every  recording,  three  types  of  filters  are  available.  In  this  instance,  we  exclusively 
 processed  recordings  with  diaphragm  mode  filtration,  as  it  is  the  most  commonly  used  by  doctors  in 
 their  daily  activities.  The  data  is  labeled,  providing  information  about  the  presence  of  respiratory 
 events, such as crackles and wheezes, as well as the final diagnosis. 

 Among  the  patients,  35  are  healthy  subjects,  while  77  have  been  diagnosed  with  conditions 
 including  asthma,  heart  failure,  pneumonia,  bronchitis,  pleural  effusion,  lung  fibrosis,  or  COPD.  In 
 contrast  to  the  ICBHI  dataset,  the  respiratory  cycles  are  not  determined  in  this  case.  Both  the 
 annotation  data  and  the  setup  details  for  each  patient  are  encoded  in  the  file  names  and  also 
 structured  in  a  separate  sheet.  A  single  type  of  recording  device  was  used  specifically  the  Littmann 
 3200 Electronic Stethoscope. (Fraiwan, Fraiwan, Khassawneh, & Ibnian, 2021) 
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 4. Preprocessing 
 In  this  paper,  our  primary  focus  is  to  automatically  determine  whether  a  person  is  healthy  or 

 sick.  For  this  purpose,  we  needed  to  extract  from  the  annotations  only  the  information  relevant  to 
 us.  We  processed  the  annotation  files  from  each  dataset,  specifically  extracting  the  diagnosis 
 information.  Patients  labeled  as  Healthy  or  Normal  were  assigned  a  label  of  0,  while  those 
 diagnosed with any disease were assigned a label of 1. 

 Having  recordings  from  two  datasets  and  various  recording  devices,  the  sound  data  was 
 recorded  with  different  sample  rates,  ranging  from  4kHz  to  44.1  kHz.  Consequently,  we 
 standardized  each  recording  by  resampling  it  to  a  rate  of  4kHz.  Additionally,  each  sound  was 
 divided into frames, with each frame containing 1024 samples with an overlap of 512 samples. 

 Sound  segmentation  plays  a  very  important  role  in  the  success  of  our  proposed  method.  On 
 one  hand,  even  with  the  combination  of  two  datasets,  the  available  data  for  training  a  neural 
 network  remains  limited.  By  breaking  down  the  recordings  into  smaller  segments,  we  generate 
 numerous  smaller  samples  for  training,  as  opposed  to  having  fewer  larger  samples.  This  helps  in  the 
 training  of  the  neural  network.  On  the  other  hand,  each  recording  varies  in  length,  ranging  from  5 
 seconds  to  90  seconds.  Handling  the  recordings  as  they  are  is  impractical,  if  not  impossible,  so 
 segmenting them into smaller units provides uniformly sized samples for training. 

 The  easiest  way  to  segment  each  recording  involves  arbitrarily  setting  a  segment  length, 
 calculating  the  duration  of  each  recording,  and  dividing  it  by  the  chosen  length,  leaving  out  the  rest 
 of  the  division.  However,  with  this  method,  there  is  a  risk  of  splitting  recordings  in  the  middle  of 
 inspiration or expiration. 

 A  more  effective  approach  is  to  segment  each  recording  into  respiratory  cycles.  Although 
 one  of  the  datasets  already  includes  this  information,  we  believe  that  automatically  segmenting 
 respiratory  recordings  into  cycles  is  essential.  This  is  particularly  important  as  our  research  aims  to 
 develop  a  generic  algorithm  capable  of  detecting  anomalies  in  any  respiratory  audio  data.  Moreover, 
 manually  determined  cycles  have  different  lengths,  which  will  make  it  difficult  for  us  to  process 
 them  later  on.  Nevertheless,  we  used  this  information  to  validate  our  automatic  segmentation. 
 Collaborating  with  a  physician  and  using  the  available  annotations,  we  established  that  the  average 
 duration of a complete respiratory cycle is 2.5 seconds. 

 The  cycles  are  not  readily  visible  or  easily  determinable  in  the  classic  waveform 
 representation  of  the  sound  (Figure  1(a))  but  can  be  distinguished  in  the  power  spectrogram,  as 
 shown in Figure 1(b). 
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 Figure 1. Respiratory sound representation with segmentation 

 Therefore,  we  employed  the  spectral  centroid,  a  frequency  domain  feature  in  sound  that 
 indicates  the  so-called  “center  of  gravity”  of  the  magnitude  spectrum.  In  other  words,  it  shows  the 
 frequency  band  with  the  most  energy.  We  calculate  the  spectral  centroid  for  each  frame  t  ,  doing 
 essentially  a  weighted  mean  of  the  frequencies,  where  the  weights  are  the  magnitude  of  a  certain 
 frequency bin (Constantinescu & Brad, 2023), as expressed in the following equation (1): 

 (1)  𝑆𝐶 
 𝑡 

=     𝑛 = 1 

 𝑁 

∑  𝑚 
 𝑡 
( 𝑛 ) ⋅  𝑛 
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 𝑁 
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 𝑡 
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 The  maximum  values  of  the  spectral  centroid  indicate  the  moments  with  the  most  energy  in 
 sound,  which,  in  our  case,  correspond  to  the  respiratory  cycles.  Upon  observation,  we  noted  that  the 
 peaks  are  not  situated  in  the  middle  of  the  respiratory  cycles  but  rather  approximately  0.8  seconds 
 after  the  start  of  inspiration  and  1.7  seconds  before  the  end  of  expiration.  Using  these  established 
 values,  we  extract  the  2.5-second  respiratory  cycle  around  each  spectral  centroid  peak.  In  Figure 
 1(c),  a  visual  representation  of  the  calculated  spectral  centroid,  the  continuous  green  vertical  line 
 indicates  the  start  of  the  respiratory  cycle,  while  the  dashed  red  vertical  line  marks  the  end.  If  a 
 spectral  centroid  peak  is  too  close  to  the  start  or  end  of  the  recording,  we  exclude  it,  as  it  may  result 
 in  an  incomplete  cycle  that  could  disrupt  our  algorithm  later.  Additionally,  since  every  patient  is 
 different,  the  respiratory  rate  is  different,  resulting  in  different  values  for  the  length  of  the 
 respiratory  cycles.  We  maintain  our  established  2.5-second  cycle  length.  This  may  lead  to  some 
 cycles  overlapping  slightly,  a  situation  that  will  not  lead  to  any  issues  for  the  future  usage  of  a 
 machine learning algorithm. 
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 5. Experimental results 
 5.1. Feature extraction 
 After  preprocessing  the  recordings  and  annotations,  we  ended  up  with  a  set  of  data  vectors, 

 each  representing  a  sound  with  a  fixed  length  of  2.5  seconds.  Each  vector  contains  one  respiratory 
 cycle and is labeled as 1 if it originates from a sick person, or 0 if it is from a healthy individual. 

 Despite  opting  for  a  deep  learning  approach  in  this  experiment,  which  theoretically  doesn’t 
 need  feature  extraction,  the  current  state  of  the  art  suggests  that,  in  the  case  of  sound,  better  results 
 are  achieved  by  extracting  Mel  Frequency  Cepstral  Coefficients  (MFCCs)  from  the  sound  and 
 training  the  model  with  them  (Huang,  et  al.,  2023).  Taking  a  step  further,  we  are  using  Gammatone 
 Frequency  Cepstral  Coefficients  (GFCCs),  a  set  of  coefficients  that  have  demonstrated  excellent 
 results  in  speech  recognition  (Liu,  2018).  GFCCs  are  particularly  useful  for  speech  and  music 
 processing,  as  they  can  simulate  the  characteristics  of  the  auditory  system,  being  particularly 
 effective  in  capturing  the  fine  spectral  details  of  the  speech  sounds  that  are  important  for  speech 
 processing.  They  have  been  used  in  various  audio  and  speech  processing  tasks  such  as  speech 
 recognition,  speech  synthesis,  and  speaker  identification.  These  coefficients  have  the  potential  to 
 achieve  similar  success  in  our  case  due  to  their  effectiveness  in  capturing  the  fine  spectral  details  of 
 the sounds. 

 GFCCs  are  a  type  of  sound  representation  similar  to  MFCCs.  While  MFCCs  are  obtained  by 
 applying  a  Mel  filter  bank  to  convert  the  linear  frequency  scale  of  the  signal  to  the  Mel-scale, 
 GFCCs  employ  Gammatone  filter  banks  to  be  applied  to  the  sound.  This  choice  aims  to  better 
 replicate  how  the  human  auditory  system  perceives  sound.  A  Gammatone  filter  is  designed  to 
 mimic  the  spectral  shape  of  the  human  auditory  system,  simulating  the  behavior  of  the  basilar 
 membrane  in  the  inner  ear.  This  membrane  is  responsible  for  analyzing  the  frequency  content  of 
 sounds. 

 We  implemented  the  GFCCs  feature  extraction  relying  on  the  Spafe  implementation  (Malek, 
 et  al.,  2023)  (Malek,  Spafe:  Simplified  python  audio  features  extraction,  2023)  and  following  these 
 steps (Jeevan, Dhingra, Hanmandlu, & Panigrahi, 2017): 

 1.  The power spectrum of the signal is calculated. 
 2.  The power spectrum is multiplied by the Gammatone filter bank. 
 3.  A  non-linear  rectification  is  performed  on  the  absolute  value  of  the  signal  using  a  root 

 cubic operation. 
 4.  Finally, the Discrete cosine transform (DCT) is applied. 

 We  calculate  the  GFCCs  maintaining  the  sample  rate  and  the  framing  parameters  from  the 
 preprocessing  step,  with  a  number  of  20  ceps,  resulting  in  a  coefficient  matrix  for  each  respiratory 
 cycle.  All  resulting  matrices  have  the  same  dimensions  and  are  prepared  to  be  used  for  training  the 
 model. 

 5.2. Experiment description 
 As  previously  mentioned,  we  merged  the  two  available  datasets.  Next,  we  want  to  divide  the 

 combined dataset into three primary subsets: the training set, the testing set, and the prediction set. 
 Right  from  the  beginning,  we  randomly  selected  4  healthy  patients  and  4  patients  with  a 

 respiratory  condition  from  both  of  the  original  datasets  to  constitute  the  prediction  set.  These 
 individuals  are  excluded  from  the  dataset  throughout  the  entire  process  and  are  only  used  at  the  end 
 to  make  predictions  about  them.  The  remaining  dataset  is  further  divided  into  training  and  testing, 
 with a ratio of 70/30. 

 Although  the  biggest  challenge  in  general  anomaly  detection  lies  in  achieving  satisfactory 
 results  through  an  unsupervised  approach,  as  anomalous  data  is  challenging  to  record  (for  instance, 
 in  the  case  of  industrial  machines  where  anomalies  in  functionality  occur  rarely  and  at  unpredictable 
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 times),  we  believe  a  supervised  approach  is  more  fitting  and  realistic  for  this  specific  task.  This  is 
 because  most  patients  seeking  medical  assistance  are  indeed  ill.  Consequently,  the  recording  of 
 anomalous  lung  sounds  does  not  represent  a  significant  problem  and  it  would  be  unfortunate  not  to 
 use them for training purposes. 

 Having  prepared  the  data  for  training,  we  designed  a  deep-learning  model  for  our  neural 
 network.  As  this  paper  is  mainly  focused  on  the  preprocessing  steps  and  the  features  that  we  extract 
 from  the  sound,  we  went  for  a  simple  deep-learning  architecture.  The  model  is  sequential  and 
 features  one  Flatten  input  layer,  that  converts  the  multidimensional  input  data  to  a  one-dimensional 
 array.  The  next  three  hidden  layers  are  Dense  layers  with  512,  256  respectively  64  units,  activated 
 by  the  RELU  function.  Finally,  the  output  layer  is  also  a  dense  one,  activated  by  the  sigmoid 
 function,  since  we  are  dealing  with  a  binary  classification  problem.  The  model  underwent 
 optimization  using  the  Adam  optimizer,  as  for  calculating  the  loss  we  used  the  binary-cross  entropy 
 function. We trained the network for one hundred epochs. 

 5.3. Results 
 With  the  model  trained,  it  is  time  to  use  it  for  predictions  on  new,  previously  unseen  data, 

 using  the  8  patients  that  we  initially  excluded  from  the  dataset.  After  subjecting  their  recordings  to 
 the  same  preprocessing  steps,  we  obtained  a  total  of  219  respiratory  cycles.  Our  previously  trained 
 model  correctly  predicted  the  class  for  212  of  them  and  incorrectly  predicted  7.  If  we  circle  back 
 from  respiratory  cycles  to  patients  and  establish  a  patient’s  class  based  on  the  majority  vote  of  its 
 respiratory cycles, we achieve a 100% correct prediction rate for these 8 patients. 

 To  facilitate  comparison  with  other  proposed  methods  addressing  this  problem,  we  used  the 
 same four metrics that commonly appear in other papers: 

 •  TPR – True positive rate (Sensitivity) 
 •  TNR – True negative rate (Specificity) 
 •  Accuracy 
 •  ICBHI Score calculated as follows (2): 

 𝐼𝐶𝐵𝐻𝐼𝑆 =  𝑇𝑃𝑅 + 𝑇𝑁𝑅 
 2 

 (2) 
 Table 1 presents the results both per cycle and per patient using the aforementioned metrics. 

 Table 1: Prediction results per cycle and per patient, compared to other methods 
 Method  TPR 

 (Sensitivity) 
 TNR 

 (Specificity) 
 ACC  ICBHIS 

 RespireNet[1]  0.81  0.73  -  0.77 
 FrWCSO[2]  0.96  0.93  0.94  0.94 

 VAE[4]  0.58  0.61  0.60  0.59 
 CNN-MoE[6]  0.90  0.78  -  0.84 

 Ours  (per cycle)  1.00  0.68  0.96  0.84 
 Ours  (per patient)  1.00  1.00  1.00  1.00 

 6. Limits and Discussions 
 The  relatively  lower  True  Negative  Rate  (TNR)  can  be  attributed  to  the  dataset’s  imbalance, 

 which  has  two  primary  causes.  Firstly,  grouping  all  diseases  into  one  abnormal  class  led  to  a  larger 
 number  of  sick  patients  than  healthy  ones.  Secondly,  recordings  from  healthy  patients  are  typically 
 shorter  than  those  from  sick  patients.  This  discrepancy  may  arise  because  physicians  tend  to  verify 
 the  events  they  hear  by  placing  the  stethoscope  in  multiple  locations  on  the  patient’s  body  or  by 
 listening  for  a  longer  time,  resulting  in  more  and  longer  recordings.  Consequently,  this  leads  to  a 
 higher  number  of  respiratory  cycles  for  the  specific  patient.  To  address  this  issue,  data 
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 augmentation,  for  artificially  generating  more  normal  samples,  could  prove  to  be  a  potential 
 solution.  In  comparison  to  other  methods,  our  approach  demonstrates  superior  outcomes.  While  the 
 FRWCSO  method  closely  resembles  our  results,  the  ambiguity  of  the  dataset  casts  doubts  on  the 
 relevance of their findings. 

 7. Conclusions 
 The  primary  objective  of  this  research  is  to  enhance  respiratory  sound  anomaly  detection. 

 Our  first  contribution  involves  merging  two  distinct  datasets  and  improving  the  deep  learning 
 model’s  performance  by  training  it  on  a  bigger  dataset.  Unlike  most  experiments  that  use  a  single 
 dataset,  our  approach  reflects  a  more  realistic  scenario.  By  combining  datasets,  we  offer  a  more 
 generic  solution,  aligning  with  our  ultimate  goal  of  deploying  a  lung  sound  anomaly  detection 
 system  for  use  in  the  daily  practices  of  healthcare  professionals.  The  second  major  contribution  lies 
 in  the  automatic  segmentation  of  recordings  into  respiratory  cycles.  Beyond  helping  in  data 
 preparation  for  training,  this  step  also  contributes  to  the  development  of  a  generic  solution.  While 
 manual  labeling  might  be  more  accurate,  it  is  impractical  for  daily  use.  Lastly,  utilizing  Gammatone 
 Frequency  Cepstral  Coefficients  (GFCCs),  a  proven  sound  feature  in  speech  processing,  as  a 
 representation  for  our  lung  sound  recordings,  has  a  positive  impact  on  the  final  results.  The 
 integration  of  these  three  improvements,  combined  with  insights  from  previous  research,  has  driven 
 our  algorithm  to  the  promising  results  presented  with  relatively  low  complexity,  marking  a 
 significant step toward a generic respiratory sound anomaly detection system. 
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