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 1. Introduction 
 Breast  cancer  is  the  second  most  common  type  of  cancer  for  women,  the  first  being  lung 

 cancer  (World  Health  Organization,  2024).  According  to  the  World  Health  Organisation,  over  2 
 million  women  were  diagnosed  with  breast  cancer  in  2022  (International  Agency  for  Research  on 
 Cancer, n.d.) and over 670 thousand died (Breast Cancer Research Foundation, n.d.). 

 Diagnosing  can  be  a  laborious  process,  with  multiple  steps  often  required  to  make  an 
 accurate  assessment.  Various  medical  imaging  techniques  are  often  employed  during  this  process, 
 with  various  degrees  of  accuracy,  depending  on  the  stage  of  the  diagnosis.  The  most  common  ones 
 are  those  based  on  mammography,  echography,  thermography,  magnetic  resonance  imaging  (MRI), 
 and histopathology (Safdar et al., 2022). 

 Thermography  is  a  non-invasive  imaging  technique  that  records  the  variation  of  temperature 
 in  the  body,  based  on  infrared  radiation  emitted  by  the  body  (Singh  &  Singh,  2020).  Thermography 
 can  be  used  during  the  initial  consultation  and  is  considered  a  good  method  in  the  early  stages  of 
 cancer.  However,  it  has  some  disadvantages,  such  as  being  unable  to  detect  small  tumors  and  being 
 susceptible  to  interference  from  various  body  temperature  changes.  Specialists  have  diverse 
 opinions on this type of imaging and use it in conjunction with mammography or other techniques. 

 Mammography  is  considered  one  of  the  most  efficient  methods  for  breast  cancer  detection 
 and  diagnosis.  Through  mammography,  abnormalities  in  the  soft  tissue  can  be  visualized  and 
 calcifications  can  be  observed.  It’s  a  very  insightful  and  intensely  studied  technique  with  standard 
 protocols,  but  it  also  has  disadvantages,  such  as  exposure  to  radiation,  false  positives  or  false 
 negatives,  and  lower  efficiency  in  certain  women  such  as  younger  women  or  women  with  thicker 
 tissue. 

 MRI  offers  a  3D  anatomical  perspective  and  can  indicate  a  heightened  vascular  density  and 
 changes  in  vascular  permeability.  It’s  recommended  to  women  with  a  high  risk  of  breast  cancer  such 
 as  those  with  a  family  history  of  breast  cancer  and  those  who  present  certain  mutations  (Sheikh  et 
 al.,  2015).  Karellas  and  Vedantham  (Karellas  &  Vedantham,  2008)  found  that  breast  cancer 
 detection  with  MRI  has  a  success  rate  of  over  90%  but  determining  the  type  of  tumor  (benign  or 
 malign)  has  a  success  rate  of  only  72%.  Other  disadvantages  include  high  cost,  low  availability  due 
 to  the  high  cost  of  the  required  equipment,  and  the  relatively  high  rate  of  false  positives.  It  is  also 
 not recommended for people with claustrophobia or kidney issues. 

 Echography  has  been  used  for  a  long  time  to  differentiate  cystic  mass  from  solid  mass.  It’s 
 not  recommended  as  a  primary  imaging  method;  it’s  usually  used  in  conjunction  with  other  methods 
 such  as  mammography  or  MRI.  (Kolb  et  al.,  2002)  found  that  a  physical  consultation  followed  by  a 
 mammography  has  an  accuracy  of  74%,  and  a  mammography  followed  by  an  echography  has  an 
 accuracy  of  97%.  The  limited  viewing  angle  results  in  a  reduced  perspective  of  the  tissue  and  the 
 method is susceptible to noise. 

 Histopathological  images  are  obtained  through  a  microscope  from  biopsied  tissue.  This 
 method  offers  a  detailed  but  invasive  diagnosis  of  the  cellular  structure,  but  it  depends  on  the  size 
 and  quality  of  the  biopsy  sample.  It  is  considered  one  of  the  best  diagnosis  methods  but  is  highly 
 susceptible  to  human  error.  (Gurcan  et  al.,  2009)  highlights  the  need  for  automatization  in  the 
 diagnosis  process,  including  determining  the  type  of  tumor  (benign  or  malign),  which  would  allow 
 more  time  for  studying  malign  tumors.  The  anatomopathologist  reports  the  size,  location,  and 
 consistency  of  the  tissue  and  whether  or  not  it  is  cancerous.  When  medics  disagree  on  the  same 
 sample a new sample is harvested. 

 Image  analysis  can  be  used  to  help  oncologists,  anatomopathologists,  and  other  specialists 
 minimize  human  error  in  their  diagnoses.  Accuracy  and  ease  of  use  are  the  primary  objectives  to 
 strive for.  
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 In  this  paper,  we  propose  a  binary  classification  model  trained  using  supervised  learning  on  a 
 medium-sized  dataset  with  histopathology  images  that  contain  a  breast  cancer  type  named  invasive 
 ductal  carcinoma  (IDC).  The  model  achieves  an  accuracy  of  95.61%,  precision  of  96%,  recall  of 
 94%, and F1-score of 95% on our dataset. 

 2. Related Work 
 In  terms  of  detecting  and  diagnosing  breast  cancer,  various  approaches  have  been  developed 

 over  the  years,  ranging  from  traditional  computer-assisted  diagnosis  (CAD)  systems  to  more 
 advanced deep learning architectures, particularly convolutional neural networks (CNNs). 

 Methods  related  to  CAD  often  involved  manually  extracting  various  features  from  images, 
 mostly  related  to  shapes,  followed  by  classification  using  techniques  like  support  vector  machines 
 (SVMs)  (Byrne  et  al.,  2011;  Hussain,  Wajid,  Elzaart,  &  Berbar,  2011;  Rejani  &  Selvi,  2009;  Zhang 
 et  al.,  2013).  These  systems,  while  beneficial,  often  faced  challenges  in  generalizability  and  required 
 extensive  domain  knowledge  to  design  effective  feature  extractors.  While  these  systems  work 
 similarly  for  different  inputs,  such  as  mammographies,  histopathologies,  etc.,  they  each  present 
 different limitations and algorithms based on the data to be analyzed. 

 Alongside  CAD  methods,  multiple  CNNs  such  as  AlexNet,  VGG,  ResNet,  ResNeXt, 
 DenseNet,  and  ImageNet-based  models,  have  been  proposed  and  adapted  for  breast  cancer  detection 
 and  diagnosis,  each  presenting  its  strengths.  Various  papers  (Yao  et  al.,  2019;  Boumaraf,  Liu,  & 
 Ferkous,  2020;  Ragab  et  al.,  2019;  Acharya  et  al.,  2012;  Francis,  Sasikala,  &  Saranya,  2014;  Yan  et 
 al.,  2018;  Punitha,  Amuthan,  &  Joseph,  2018;  Lotter  et  al.,  2021;  Ng  &  Kee,  2007)  have  used  these 
 techniques to train different models on a multitude of datasets with varying degrees of precision. 

 In  addition  to  using  standalone  CNN  architectures,  hybrid  approaches  that  combine  multiple 
 models  have  also  been  explored.  For  example,  ensemble  methods  that  aggregate  the  predictions  of 
 different  CNNs  or  combine  CNNs  with  traditional  CAD  features  have  shown  promise  in  improving 
 diagnostic  acc  uracy  (  Daoud  et  al.,  2020;  Yan  et  al.,  2020;  Shahidi  et  al.,  2020;  Xie  et  al.,  2017;  Xie 
 et  al.,  2019;  Jiang  et  al.,  2019;  Mushtaq  et  al.,  2021;  Deniz  et  al.,  2018;  Krizhevsky,  Sutskever,  & 
 Hinton,  2012;  Han  et  al.,  2017;  Vesal  et  al.,  2018;  Vang,  Chen,  &  Xie,  2018;  Kwok,  2018;  Koné  & 
 Boulmane,  2018;  Nawaz,  Sewissy,  &  Soliman,  2018;  Han  et  al.,  2017).  These  models  benefit  from 
 the diverse strengths of different architectures and are more robust to variations in the data. 

 The  performance  of  these  CNN  architectures  is  often  evaluated  on  various  datasets.  These 
 datasets can be broadly categorized into public and in-house collections. 

 In  the  case  of  mammographies,  the  most  widely  used  public  datasets  are  those  of  the  Digital 
 Database  for  Screening  Mammography  (DDSM)  (references),  which  contains  a  total  of  2620 
 images,  INbreast  (references)  with  410  images,  and  the  wider  used  Curated  Breast  Imaging  Subset 
 of  DDSM  (CBIS-DDSM:  Breast  cancer  image  dataset,  n.d.,)  which  contains  more  than  10000 
 annotated images that can be used to better train deep-learning models. 

 For  histopathology  public  datasets  such  as  (BACH  ICIAR  2018  grand  challenge  on  breast 
 cancer  histology  images,  n.d.)  with  400  images,  BioImaging  2015  with  249  images,  alongside 
 Extended  BioImaging  2015  (Araújo  et  al.,  2017)  with  1319  images,  (PatchCamelyon:  Breast  cancer 
 image  dataset,  n.d.),  (BreakHis:  Breast  cancer  image  dataset,  n.d.)  tend  to  represent  the  most  used 
 ones. 

 3. Proposed Method 
 We  propose  a  supervised  learning  approach  based  on  a  slightly  modified  ResNet-50  (He  et 

 al.,  2016)  architecture,  which  can  be  observed  in  Figure  1.  We  add  a  sequential  part  at  the  end  of  the 
 ResNet50  architecture  which  comprises  an  extra  Batch  Normalization  Layer  in  front  of  a  Fully 
 Connected  layer  with  256  elements,  using  a  ReLu  activation  function.  Then  the  output  of  these 
 layers  is  reduced  to  just  one,  since  we  are  only  interested  in  classifying  if  cancer  is  present  or  not, 
 for which we use a Sigmoid activation function. 
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 Figure 1. The architecture of our proposed method 

 The modified architecture is chosen for the following reasons: 
 ●  The  Batch  Normalization  layer  is  added  to  the  end  of  the  ResNet-50  model  in  order 

 to  normalize  the  feature  inputs  on  the  color  channels  across  different  batches  before 
 the  inputs  are  sent  to  the  Fully  Connected  layer.  The  layer  works  with  a  momentum 
 of  0.99  which  is  appropriate  for  the  chosen  number  of  32  images  per  batch,  as  it  is 
 less likely a certain image in a batch will vary the mean greatly. 

 ●  The  Fully  Connected  layer  follows  the  Batch  Normalization  layer  having  a  total  of 
 256  nodes.  This  number  was  chosen  to  address  the  complexity  of  differentiating 
 between  images  that  contain  cancer  and  those  that  don’t.  Various  other  values  were 
 tested but the best results were obtained for 256 nodes. 

 ●  Inside  the  Fully  Connected  layer,  we  also  use  a  set  of  regularizers  in  order  to  avoid 
 both  underfitting  and  overfitting,  more  specifically  a  kernel  regularizer  of  L2,  with  a 
 factor  of  0.016  to  reduce  the  influence  of  larger  weight  coefficients.  Similarly,  we 
 use  two  L1  regularizers  for  biases  and  outputs  in  order  to  further  reduce  the  potential 
 of overfitting, both using a factor of 6e-4. 

 ●  We  use  a  ReLu  activation  function  because  it  tends  to  learn  better  on  these  particular 
 sets of images, though other functions were also tested. 

 ●  Because  we  are  only  interested  in  detecting  if  a  certain  image  contains  or  doesn’t 
 contain  cancer,  we  end  the  output  of  our  model  with  a  Fully  Connected  layer  of  1 
 node  which  is  activated  by  a  sigmoid  function  to  predict  the  desired  binary  output. 
 We use a threshold of 0.5 for the output. 

 3.1. Dataset 
 The  dataset  used  in  this  paper  (Mooney,  n.d.)  is  composed  of  162  images  of  very  high 

 resolution  which  pertain  to  a  specific  type  of  breast  cancer,  more  specifically  that  of  IDC.  These 
 images  were  further  sectioned  into  a  total  of  approximately  277000  images  of  50x50  resolution,  out 
 of  which  72%  were  benign  and  28%  were  malignant.  Examples  of  such  images  can  be  seen  in 
 Figure 2. 

 Figure 2. Example of dataset images: benign (a), (b); malignant (c), (d) 

 An  issue  that  the  dataset  presents  is  that  the  number  of  one  class  is  severely 
 underrepresented  compared  to  the  other.  In  order  to  address  this  class  imbalance  various  methods 
 were  explored  both  related  to  under-sampling,  such  as  those  based  on  Multilayer  Perceptron 
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 Under-Sampling  (MLPUS)  (Babar  &  Ade,  2016),  and  to  over-sampling  such  as  those  based  on 
 Synthetic Minority Over-Sampling Technique (SMOTE) (Chawla et al., 2002). 

 MLPUS  works  by  selecting  a  variety  of  samples  from  the  majority  class  and  clustering 
 them,  followed  by  determining  the  most  important  samples  using  some  form  of  evaluation,  and 
 training  of  the  Multilayer  Perceptron  (MLP)  based  on  said  samples.  The  selected  samples  are  then 
 again  clustered  by  using  a  k-means  algorithm,  where  k  would  be  equal  to  the  number  of  samples  in 
 the  minority  class.  While  this  is  a  useful  method  for  under-sampling  in  the  case  of  a  major  disparity 
 between  classes,  in  our  case  the  ratio  is  just  one  of  about  3:1,  thus  the  usage  and  the  complexity  of 
 reducing the samples is not justified. 

 Similarly,  an  over-sampling  technique  such  as  SMOTE  could  be  employed.  SMOTE  works 
 by  clustering  data  in  the  minority  class  and  then  selecting  certain  samples  and  their  nearest 
 neighbors  and  interpolating  between  them  in  order  to  generate  new  samples.  Whilst  this  is  a  valid 
 method  for  generating  new  samples,  it  suffers  from  a  couple  of  issues,  mainly  that  of  data 
 generalization  since  samples  are  interpolated  based  on  nearest  neighbors.  Other  methods  based  on 
 SMOTE,  such  as  Borderline-SMOTE  (Han,  Wang,  &  Mao,  2005)  have  been  proposed  which  seek 
 to  solve  these  issues  by  over-sampling  minority  samples  located  next  to  some  decision  boundaries. 
 Whilst  these  methods  can  generate  valid  new  data,  they  can  suffer  from  issues  such  as  choosing 
 outliers  in  the  data,  thus  increasing  the  overall  noisiness  of  the  dataset.  Additionally,  the  technique 
 can  increase  the  complexity  and  the  overall  duration  of  the  training.  For  these  reasons,  we  chose  to 
 use a more simplistic approach instead. 

 In  the  case  of  our  paper,  we  choose  a  simple  approach  of  randomly  subsampling  the  two 
 classes  into  equal-sized  datasets  of  10000  images  each,  giving  us  a  dataset  comprised  of  20000 
 images  split  in  a  balanced  manner.  We  choose  this  approach  for  a  variety  of  reasons,  more 
 specifically  the  gains  compared  to  the  performance  costs  can  be  considered  marginal,  as  well  as  the 
 fact  that  the  class  imbalance  is  not  severe  enough  to  justify  a  more  complex  approach,  due  to  the 
 ratio  being  only  3:1.  One  thing  to  note  is  that  while  picking  a  smaller  subsample  of  the  dataset  than 
 the  one  equal  to  the  minority  class  can  lead  to  potential  data  loss,  we  consider  the  number  of  images 
 chosen to still be diverse and representative enough for this not to be an issue. 

 3.2. Data Augmentation 
 Due  to  reducing  the  size  of  our  dataset,  we  decided  to  further  increase  the  robustness  of  our 

 model  by  performing  on-the-fly  augmentations.  This  is  done  in  order  to  avoid  potential  overfitting 
 as  well  as  increase  the  potential  for  generalization,  whilst  not  increasing  the  dataset  size  so  the 
 training  time  is  kept  the  same.  We  choose  a  variety  of  different  augmentations  and  approaches  that 
 won’t modify the data drastically, in order to avoid introducing potential synthetic outliers. 

 Since  histopathological  images  are  captured  using  high-resolution  microscopes,  this  process 
 may  introduce  noise  due  to  certain  imaging  artifacts,  such  as  uneven  lighting  or  sample  preparation 
 issues,  which  can  obscure  important  tissue  structures  and  hinder  the  identification  of  cancerous 
 cells.  In  order  to  prevent  this  we  use  a  Gaussian  filter  which  can  smooth  the  image  while 
 maintaining  certain  fine  details  such  as  edges  which  are  essential  in  differentiating  between 
 malignant and benign areas. 

 Since  tumors  tend  to  have  an  irregular  shape  and  are  very  varied  in  their  shapes,  in  the  case 
 of  IDC,  severe  rotations  can  affect  the  potential  to  detect  certain  structures  and  evaluate  them 
 correctly.  Additionally,  since  the  model  is  pre-trained  on  ImageNet  and  images  with  certain 
 orientations,  varying  said  orientations  drastically  can  also  reduce  overall  performance.  For  this 
 reason,  we  choose  to  only  use  rotations  at  small  angles,  of  up  to  20  degrees,  small  image  shifts  that 
 can  preserve  the  overall  structure  of  up  to  20%  of  the  image  width/height,  as  well  as  flips  which  can 
 also preserve the overall structure. 

 Because  the  images  are  in  a  50x50  resolution,  and  ResNet-50  requires  inputs  in  the  shape  of 
 224x224  images,  we  use  a  variety  of  methods  to  achieve  this  requirement.  The  simplest  one  is  that 
 of  directly  upscaling  the  images  to  the  desired  resolution  using  cubic  interpolation.  Similarly,  we 
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 don’t  have  to  directly  upscale  to  the  desired  resolution  and  can  use  padding  alongside  upscaling  to 
 obtain  the  required  input.  Both  these  methods  have  their  detriments,  as  they  tend  to  introduce 
 additional  features  or  can  lead  to  creating  outliers  in  the  dataset,  and  since  this  has  to  be  applied  to 
 every  image  in  the  dataset  it  can  affect  the  result  as  a  whole.  In  the  future  methods  of  combining 
 images  in  patches  for  training  could  be  considered  in  order  to  maintain  a  more  organic  overall  input, 
 or more complex upscaling using CNN or super-resolution techniques could be employed. 

 Another  set  of  methods  we  employed  are  those  related  to  changing  the  color  values  of  the 
 image,  specifically  by  changing  the  color  space  to  grayscale.  This  tends  to  reduce  the  model 
 complexity,  with  the  main  downside  that  the  model  was  trained  on  RGB  images,  thus  certain 
 variations  can  lead  to  issues  in  interpretation.  Additionally,  some  features  can  be  lost  when  changing 
 color spaces, and certain artifacts could also be introduced. 

 Contrast  adjustment  remaps  pixel  values  so  that  they  cover  the  full  range  of  valid  pixel 
 values.  Various  methods  can  be  used,  ranging  from  quick  and  simple  global  methods  such  as 
 rescaling  and  histogram  equalization  to  more  computationally  intensive  adaptive  techniques. 
 Contrast  adjustment  makes  finer  details  in  the  image  more  pronounced,  allowing  the  classifier  to 
 more easily differentiate between healthy and cancerous images. 

 3.3. Training and validation 
 In  order  to  train  our  model,  we  split  the  dataset  into  80%  training  data  and  20%  test  data.  The 

 training  data  is  further  split  into  training  and  validation  using  a  five-fold  cross-validation  algorithm. 
 The  input  of  our  model  has  been  modified  again  into  gamma  tone  spectrograms  of  feature  maps  and 
 fed  into  the  ResNet-50  architecture.  The  model  is  pre-trained  on  the  ImageNet  (Deng  et  al.,  2009) 
 dataset  to  improve  training  speed  and  reduce  potential  overfitting.  We  train  our  models  for  50 
 epochs  on  the  Google  Collab  platform  using  an  Adam  optimizer,  with  an  initial  learning  rate  of 
 1e-5, and a batch size of 32. 

 4. Results 
 In  Table  1  we  can  observe  results  for  different  combinations  of  augmentation  methods  used 

 during  training  that  use  only  the  original  ResNet-50  architecture.  Table  2  presents  the  results  for 
 methods used in our proposed architecture. 

 Table 1. ResNet-50 results 
 #  Method  Accuracy (%)  Precision (%)  Recall (%)  F1-Score (%) 
 1  rescaling  87.09  51  50  50 
 2  rescaling, grayscale conversion  87.44  54  52  52 
 3  rescaling, contrast adjustment  79.06  55  57  56 

 Table 2. Proposed Method results 
 #  Method  Accuracy (%)  Precision (%)  Recall (%)  F1-Score (%) 
 4  rescaling  92.44  53  54  54 
 5  rescaling, grayscale 

 conversion, adaptive 
 thresholding 

 93.48  52  54  53 

 6  rescaling, color conversion, 
 histogram equalization 

 93.25  56  58  57 

 Methods  5  and  6  use,  alongside  the  mentioned  techniques,  those  of  rotation,  flipping,  and 
 shifting,  as  well  as  padding.  The  evolution  of  these  methods  can  be  seen  in  Figures  3  and  4,  which 
 present  the  evolution  of  the  overall  accuracy,  as  well  as  that  of  the  loss  function,  alongside  the 
 confusion matrix. 
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 Figure 3. Fifth method results 

 Figure 4. Sixth method results 

 Table  3  showcases  the  results  obtained  by  training  using  five-fold  cross-validation  and  the 
 sixth  method  since  that  gave  the  best  overall  results.  These  models  were  trained  on  only  20  epochs 
 each. 

 Table 3. Five-fold cross-validation results 
 Fold  Accuracy (%)  Precision (%)  Recall (%)  F1-Score (%)  Loss 

 1  49.04  49  100  66  12.31 
 2  68.22  100  27  43  1.88 
 3  95.61  96  94  95  1.86 
 4  98.08  97  99  98  7.39 
 5  94.5  88  100  94  4.63 

 As  we  can  see  the  third  and  fourth  folds  seem  to  offer  the  best  overall  results  whilst  the  first 
 fold  offers  the  worst  overall  results.  Even  though  the  fourth  fold  has  higher  metrics  during 
 validation  it  performs  worse  during  training,  thus  we  can  assume  the  fold  is  likely  more  biased.  For 
 this reason, we consider the third fold to offer the best results. 
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 Figure 6. Third fold results 

 5. Conclusions 
 As  we  can  see  from  the  results  our  proposed  model  obtained  an  accuracy  of  95.61%,  a 

 precision  of  96%,  a  recall  of  94%,  and  an  F1-score  of  95%.  This  outperforms  the  model  proposed  in 
 (Sathe  et  al.,  2020)  which  only  obtains  an  overall  accuracy  of  around  87.64%  on  the  same  dataset. 
 In  order  to  increase  the  accuracy  as  well  as  the  other  metrics  we  used  a  variety  of  data  augmentation 
 techniques,  as  well  as  five-fold  cross-validation,  which  also  allows  for  a  more  robust  and  reliable 
 model. 

 For  future  work,  the  model  could  be  compared  to  a  variety  of  other  architectures  or  be  tested 
 on  different  other  datasets,  such  as  (BACH  ICIAR  2018  grand  challenge  on  breast  cancer  histology 
 images,  n.d.),  or  PatchCamelyon  (PatchCamelyon:  Breast  cancer  image  dataset,  n.d.)  to  see  how  it 
 would  perform  on  them.  Another  thing  that  could  be  tried  would  be  combining  unsupervised 
 techniques  with  those  of  CNN  and  see  if  there  are  potential  other  improvements  that  can  be 
 obtained. 

 Something  else  that  can  be  done  in  the  future  is  qualifying  uncertainty  in  the  predictions 
 through  the  use  of  different  techniques  such  as  Monte  Carlo  Dropout  to  fit  the  model  output  to  a 
 distribution  as  opposed  to  a  single  value.  This  would  allow  for  the  better  detection  of  potential 
 outliers  or  determine  if  the  model  hyperparameters  could  be  better  adjusted  in  obtaining  more  robust 
 configurations.  In  addition  to  this,  enabling  visualization  of  the  model’s  feature  maps  can  also  be 
 employed  to  further  allow  people  a  better  understanding  of  why  certain  decisions  were  made  during 
 classification. 
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