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1. Introduction

Breast cancer is the second most common type of cancer for women, the first being lung
cancer (World Health Organization, 2024). According to the World Health Organisation, over 2
million women were diagnosed with breast cancer in 2022 (International Agency for Research on
Cancer, n.d.) and over 670 thousand died (Breast Cancer Research Foundation, n.d.).

Diagnosing can be a laborious process, with multiple steps often required to make an
accurate assessment. Various medical imaging techniques are often employed during this process,
with various degrees of accuracy, depending on the stage of the diagnosis. The most common ones
are those based on mammography, echography, thermography, magnetic resonance imaging (MRI),
and histopathology (Safdar et al., 2022).

Thermography is a non-invasive imaging technique that records the variation of temperature
in the body, based on infrared radiation emitted by the body (Singh & Singh, 2020). Thermography
can be used during the initial consultation and is considered a good method in the early stages of
cancer. However, it has some disadvantages, such as being unable to detect small tumors and being
susceptible to interference from various body temperature changes. Specialists have diverse
opinions on this type of imaging and use it in conjunction with mammography or other techniques.

Mammography is considered one of the most efficient methods for breast cancer detection
and diagnosis. Through mammography, abnormalities in the soft tissue can be visualized and
calcifications can be observed. It’s a very insightful and intensely studied technique with standard
protocols, but it also has disadvantages, such as exposure to radiation, false positives or false
negatives, and lower efficiency in certain women such as younger women or women with thicker
tissue.

MRI offers a 3D anatomical perspective and can indicate a heightened vascular density and
changes in vascular permeability. It’s recommended to women with a high risk of breast cancer such
as those with a family history of breast cancer and those who present certain mutations (Sheikh et
al., 2015). Karellas and Vedantham (Karellas & Vedantham, 2008) found that breast cancer
detection with MRI has a success rate of over 90% but determining the type of tumor (benign or
malign) has a success rate of only 72%. Other disadvantages include high cost, low availability due
to the high cost of the required equipment, and the relatively high rate of false positives. It is also
not recommended for people with claustrophobia or kidney issues.

Echography has been used for a long time to differentiate cystic mass from solid mass. It’s
not recommended as a primary imaging method; it’s usually used in conjunction with other methods
such as mammography or MRI. (Kolb et al., 2002) found that a physical consultation followed by a
mammography has an accuracy of 74%, and a mammography followed by an echography has an
accuracy of 97%. The limited viewing angle results in a reduced perspective of the tissue and the
method is susceptible to noise.

Histopathological images are obtained through a microscope from biopsied tissue. This
method offers a detailed but invasive diagnosis of the cellular structure, but it depends on the size
and quality of the biopsy sample. It is considered one of the best diagnosis methods but is highly
susceptible to human error. (Gurcan et al., 2009) highlights the need for automatization in the
diagnosis process, including determining the type of tumor (benign or malign), which would allow
more time for studying malign tumors. The anatomopathologist reports the size, location, and
consistency of the tissue and whether or not it is cancerous. When medics disagree on the same
sample a new sample is harvested.

Image analysis can be used to help oncologists, anatomopathologists, and other specialists
minimize human error in their diagnoses. Accuracy and ease of use are the primary objectives to
strive for.

198



M-L. Voncila, N. Tarba, S. Oblesniuc et al. - Classification of Breast Cancer Tumors from Histopathological Images
through a Modified ResNet-50 Architecture

In this paper, we propose a binary classification model trained using supervised learning on a
medium-sized dataset with histopathology images that contain a breast cancer type named invasive
ductal carcinoma (IDC). The model achieves an accuracy of 95.61%, precision of 96%, recall of
94%, and F1-score of 95% on our dataset.

2. Related Work

In terms of detecting and diagnosing breast cancer, various approaches have been developed
over the years, ranging from traditional computer-assisted diagnosis (CAD) systems to more
advanced deep learning architectures, particularly convolutional neural networks (CNNs).

Methods related to CAD often involved manually extracting various features from images,
mostly related to shapes, followed by classification using techniques like support vector machines
(SVMs) (Byrne et al., 2011; Hussain, Wajid, Elzaart, & Berbar, 2011; Rejani & Selvi, 2009; Zhang
et al., 2013). These systems, while beneficial, often faced challenges in generalizability and required
extensive domain knowledge to design effective feature extractors. While these systems work
similarly for different inputs, such as mammographies, histopathologies, etc., they each present
different limitations and algorithms based on the data to be analyzed.

Alongside CAD methods, multiple CNNs such as AlexNet, VGG, ResNet, ResNeXt,
DenseNet, and ImageNet-based models, have been proposed and adapted for breast cancer detection
and diagnosis, each presenting its strengths. Various papers (Yao et al., 2019; Boumaraf, Liu, &
Ferkous, 2020; Ragab et al., 2019; Acharya et al., 2012; Francis, Sasikala, & Saranya, 2014; Yan et
al., 2018; Punitha, Amuthan, & Joseph, 2018; Lotter et al., 2021; Ng & Kee, 2007) have used these
techniques to train different models on a multitude of datasets with varying degrees of precision.

In addition to using standalone CNN architectures, hybrid approaches that combine multiple
models have also been explored. For example, ensemble methods that aggregate the predictions of
different CNNs or combine CNNs with traditional CAD features have shown promise in improving
diagnostic accuracy (Daoud et al., 2020; Yan et al., 2020; Shahidi et al., 2020; Xie et al., 2017; Xie
et al., 2019; Jiang et al., 2019; Mushtaq et al., 2021; Deniz et al., 2018; Krizhevsky, Sutskever, &
Hinton, 2012; Han et al., 2017; Vesal et al., 2018; Vang, Chen, & Xie, 2018; Kwok, 2018; Koné¢ &
Boulmane, 2018; Nawaz, Sewissy, & Soliman, 2018; Han et al., 2017). These models benefit from
the diverse strengths of different architectures and are more robust to variations in the data.

The performance of these CNN architectures is often evaluated on various datasets. These
datasets can be broadly categorized into public and in-house collections.

In the case of mammographies, the most widely used public datasets are those of the Digital
Database for Screening Mammography (DDSM) (references), which contains a total of 2620
images, INbreast (references) with 410 images, and the wider used Curated Breast Imaging Subset
of DDSM (CBIS-DDSM: Breast cancer image dataset, n.d.,) which contains more than 10000
annotated images that can be used to better train deep-learning models.

For histopathology public datasets such as (BACH ICIAR 2018 grand challenge on breast
cancer histology images, n.d.) with 400 images, Biolmaging 2015 with 249 images, alongside
Extended Biolmaging 2015 (Aratjo et al., 2017) with 1319 images, (PatchCamelyon: Breast cancer
image dataset, n.d.), (BreakHis: Breast cancer image dataset, n.d.) tend to represent the most used
ones.

3. Proposed Method

We propose a supervised learning approach based on a slightly modified ResNet-50 (He et
al., 2016) architecture, which can be observed in Figure 1. We add a sequential part at the end of the
ResNet50 architecture which comprises an extra Batch Normalization Layer in front of a Fully
Connected layer with 256 elements, using a ReLu activation function. Then the output of these
layers is reduced to just one, since we are only interested in classifying if cancer is present or not,
for which we use a Sigmoid activation function.
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Figure 1. The architecture of our proposed method

The modified architecture is chosen for the following reasons:

The Batch Normalization layer is added to the end of the ResNet-50 model in order
to normalize the feature inputs on the color channels across different batches before
the inputs are sent to the Fully Connected layer. The layer works with a momentum
of 0.99 which is appropriate for the chosen number of 32 images per batch, as it is
less likely a certain image in a batch will vary the mean greatly.

The Fully Connected layer follows the Batch Normalization layer having a total of
256 nodes. This number was chosen to address the complexity of differentiating
between images that contain cancer and those that don’t. Various other values were
tested but the best results were obtained for 256 nodes.

Inside the Fully Connected layer, we also use a set of regularizers in order to avoid
both underfitting and overfitting, more specifically a kernel regularizer of L2, with a
factor of 0.016 to reduce the influence of larger weight coefficients. Similarly, we
use two L1 regularizers for biases and outputs in order to further reduce the potential
of overfitting, both using a factor of 6e-4.

We use a ReLu activation function because it tends to learn better on these particular
sets of images, though other functions were also tested.

Because we are only interested in detecting if a certain image contains or doesn’t
contain cancer, we end the output of our model with a Fully Connected layer of 1
node which is activated by a sigmoid function to predict the desired binary output.
We use a threshold of 0.5 for the output.

3.1. Dataset

The dataset used in this paper (Mooney, n.d.) is composed of 162 images of very high
resolution which pertain to a specific type of breast cancer, more specifically that of IDC. These
images were further sectioned into a total of approximately 277000 images of 50x50 resolution, out
of which 72% were benign and 28% were malignant. Examples of such images can be seen in

Figure 2.

(a) (b) (c) (d)
Figure 2. Example of dataset images: benign (a), (b); malignant (c), (d)

An issue that the dataset presents is that the number of one class is severely
underrepresented compared to the other. In order to address this class imbalance various methods
were explored both related to under-sampling, such as those based on Multilayer Perceptron

200



M-L. Voncila, N. Tarba, S. Oblesniuc et al. - Classification of Breast Cancer Tumors from Histopathological Images
through a Modified ResNet-50 Architecture

Under-Sampling (MLPUS) (Babar & Ade, 2016), and to over-sampling such as those based on
Synthetic Minority Over-Sampling Technique (SMOTE) (Chawla et al., 2002).

MLPUS works by selecting a variety of samples from the majority class and clustering
them, followed by determining the most important samples using some form of evaluation, and
training of the Multilayer Perceptron (MLP) based on said samples. The selected samples are then
again clustered by using a k-means algorithm, where k would be equal to the number of samples in
the minority class. While this is a useful method for under-sampling in the case of a major disparity
between classes, in our case the ratio is just one of about 3:1, thus the usage and the complexity of
reducing the samples is not justified.

Similarly, an over-sampling technique such as SMOTE could be employed. SMOTE works
by clustering data in the minority class and then selecting certain samples and their nearest
neighbors and interpolating between them in order to generate new samples. Whilst this is a valid
method for generating new samples, it suffers from a couple of issues, mainly that of data
generalization since samples are interpolated based on nearest neighbors. Other methods based on
SMOTE, such as Borderline-SMOTE (Han, Wang, & Mao, 2005) have been proposed which seek
to solve these issues by over-sampling minority samples located next to some decision boundaries.
Whilst these methods can generate valid new data, they can suffer from issues such as choosing
outliers in the data, thus increasing the overall noisiness of the dataset. Additionally, the technique
can increase the complexity and the overall duration of the training. For these reasons, we chose to
use a more simplistic approach instead.

In the case of our paper, we choose a simple approach of randomly subsampling the two
classes into equal-sized datasets of 10000 images each, giving us a dataset comprised of 20000
images split in a balanced manner. We choose this approach for a variety of reasons, more
specifically the gains compared to the performance costs can be considered marginal, as well as the
fact that the class imbalance is not severe enough to justify a more complex approach, due to the
ratio being only 3:1. One thing to note is that while picking a smaller subsample of the dataset than
the one equal to the minority class can lead to potential data loss, we consider the number of images
chosen to still be diverse and representative enough for this not to be an issue.

3.2. Data Augmentation

Due to reducing the size of our dataset, we decided to further increase the robustness of our
model by performing on-the-fly augmentations. This is done in order to avoid potential overfitting
as well as increase the potential for generalization, whilst not increasing the dataset size so the
training time is kept the same. We choose a variety of different augmentations and approaches that
won’t modify the data drastically, in order to avoid introducing potential synthetic outliers.

Since histopathological images are captured using high-resolution microscopes, this process
may introduce noise due to certain imaging artifacts, such as uneven lighting or sample preparation
issues, which can obscure important tissue structures and hinder the identification of cancerous
cells. In order to prevent this we use a Gaussian filter which can smooth the image while
maintaining certain fine details such as edges which are essential in differentiating between
malignant and benign areas.

Since tumors tend to have an irregular shape and are very varied in their shapes, in the case
of IDC, severe rotations can affect the potential to detect certain structures and evaluate them
correctly. Additionally, since the model is pre-trained on ImageNet and images with certain
orientations, varying said orientations drastically can also reduce overall performance. For this
reason, we choose to only use rotations at small angles, of up to 20 degrees, small image shifts that
can preserve the overall structure of up to 20% of the image width/height, as well as flips which can
also preserve the overall structure.

Because the images are in a 50x50 resolution, and ResNet-50 requires inputs in the shape of
224x224 images, we use a variety of methods to achieve this requirement. The simplest one is that
of directly upscaling the images to the desired resolution using cubic interpolation. Similarly, we
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don’t have to directly upscale to the desired resolution and can use padding alongside upscaling to
obtain the required input. Both these methods have their detriments, as they tend to introduce
additional features or can lead to creating outliers in the dataset, and since this has to be applied to
every image in the dataset it can affect the result as a whole. In the future methods of combining
images in patches for training could be considered in order to maintain a more organic overall input,
or more complex upscaling using CNN or super-resolution techniques could be employed.

Another set of methods we employed are those related to changing the color values of the
image, specifically by changing the color space to grayscale. This tends to reduce the model
complexity, with the main downside that the model was trained on RGB images, thus certain
variations can lead to issues in interpretation. Additionally, some features can be lost when changing
color spaces, and certain artifacts could also be introduced.

Contrast adjustment remaps pixel values so that they cover the full range of valid pixel
values. Various methods can be used, ranging from quick and simple global methods such as
rescaling and histogram equalization to more computationally intensive adaptive techniques.
Contrast adjustment makes finer details in the image more pronounced, allowing the classifier to
more easily differentiate between healthy and cancerous images.

3.3. Training and validation

In order to train our model, we split the dataset into 80% training data and 20% test data. The
training data is further split into training and validation using a five-fold cross-validation algorithm.
The input of our model has been modified again into gamma tone spectrograms of feature maps and
fed into the ResNet-50 architecture. The model is pre-trained on the ImageNet (Deng et al., 2009)
dataset to improve training speed and reduce potential overfitting. We train our models for 50

epochs on the Google Collab platform using an Adam optimizer, with an initial learning rate of
le-5, and a batch size of 32.

4. Results

In Table 1 we can observe results for different combinations of augmentation methods used
during training that use only the original ResNet-50 architecture. Table 2 presents the results for
methods used in our proposed architecture.

Table 1. ResNet-50 results

# | Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 | rescaling 87.09 51 50 50

2 | rescaling, grayscale conversion 87.44 54 52 52

3 [ rescaling, contrast adjustment 79.06 55 57 56

Table 2. Proposed Method results

# | Method Accuracy (%) Precision (%) | Recall (%) F1-Score (%)

4 | rescaling 92.44 53 54 54

5 | rescaling, grayscale 93.48 52 54 53
conversion, adaptive
thresholding

6 | rescaling, color conversion, 93.25 56 58 57
histogram equalization

Methods 5 and 6 use, alongside the mentioned techniques, those of rotation, flipping, and
shifting, as well as padding. The evolution of these methods can be seen in Figures 3 and 4, which
present the evolution of the overall accuracy, as well as that of the loss function, alongside the
confusion matrix.
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Table 3 showcases the results obtained by training using five-fold cross-validation and the
sixth method since that gave the best overall results. These models were trained on only 20 epochs

each.

Table 3. Five-fold cross-validation results

Fold | Accuracy (%) Precision (%) Recall (%) F1-Score (%) Loss
1 49.04 49 100 66 12.31
2 68.22 100 27 43 1.88
3 95.61 96 94 95 1.86
4 98.08 97 99 98 7.39
5 94.5 88 100 94 4.63

As we can see the third and fourth folds seem to offer the best overall results whilst the first

fold offers the worst overall results. Even though the fourth fold has higher metrics during
validation it performs worse during training, thus we can assume the fold is likely more biased. For
this reason, we consider the third fold to offer the best results.
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5. Conclusions

As we can see from the results our proposed model obtained an accuracy of 95.61%, a
precision of 96%, a recall of 94%, and an F1-score of 95%. This outperforms the model proposed in
(Sathe et al., 2020) which only obtains an overall accuracy of around 87.64% on the same dataset.
In order to increase the accuracy as well as the other metrics we used a variety of data augmentation
techniques, as well as five-fold cross-validation, which also allows for a more robust and reliable
model.

For future work, the model could be compared to a variety of other architectures or be tested
on different other datasets, such as (BACH ICIAR 2018 grand challenge on breast cancer histology
images, n.d.), or PatchCamelyon (PatchCamelyon: Breast cancer image dataset, n.d.) to see how it
would perform on them. Another thing that could be tried would be combining unsupervised
techniques with those of CNN and see if there are potential other improvements that can be
obtained.

Something else that can be done in the future is qualifying uncertainty in the predictions
through the use of different techniques such as Monte Carlo Dropout to fit the model output to a
distribution as opposed to a single value. This would allow for the better detection of potential
outliers or determine if the model hyperparameters could be better adjusted in obtaining more robust
configurations. In addition to this, enabling visualization of the model’s feature maps can also be
employed to further allow people a better understanding of why certain decisions were made during
classification.
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