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 1. Introduction 
 Parkinson’s  disease  is  a  multifaceted  neurodegenerative  disease  affecting  more  than  ten 

 million  population  worldwide.  Despite  extensive  research,  a  proper  cure  for  this  disease  has  not 
 been  identified  (Mughal  et  al.,  2022).  The  pathophysiology  of  this  disease  is  a  reduction  in  the 
 neurotransmitter  dopamine  in  a  specific  area  called  substantia  nigra  in  the  midbrain.  The 
 impairment  of  dopaminergic  systems  is  responsible  for  the  PD  symptoms,  with  the  depletion  of 
 dopaminergic neurons that causes a wide range of motor and non-motor symptoms. 

 Motor  symptoms  (Bhowmick  et  al.,  2020)  include  tremors,  stiffness  in  the  extremities  of  the 
 body,  postural  imbalances,  movement  disorders,  etc.  which  show  that  the  disease  is  progressing. 
 The  non-motor  symptoms  (Todorova  et  al.,  2014)  include  speech  and  communication  problems, 
 olfactory  disturbances,  sleep  disorders,  cognitive  impairments,  and  dementia.  However,  diagnosing 
 PD  based  solely  on  qualitative  criteria  can  be  challenging  since  other  diseases  share  similar 
 symptoms. 

 Diagnosis  of  PD  by  clinicians  depends  on  a  combination  of  clinical  symptoms  and 
 diagnostic  tests.  The  diagnosis  of  PD  is  confirmed  by  a  significant  persistent  effect  of  dopaminergic 
 therapy.  Transcranial  Sonography  (TCS),  Computed  Tomography  (CT),  Magnetic  Resonance 
 Imaging  (MRI),  and  Single-Photon  Emission  Computerized  Tomography  (SPECT)  (Trifonova  et 
 al.,  2020;  Mortezazadeh  et  al.,  2021),  etc.,  are  the  widely  used  non-invasive,  diagnostic  imaging 
 techniques. 

 Even  though  the  current  treatment  helps  diagnose  the  symptoms,  they  do  not  reduce  or  curb 
 the  progression  of  the  disease.  The  motor  symptoms  manifest  as  the  disease  progresses.  If  the 
 non-motor  symptoms  can  be  identified  earlier  further  progression  of  the  disease  can  be  prevented. 
 Therefore,  the  focus  is  made  on  identifying  the  disease  at  an  early  stage  where  the  non-motor 
 symptoms  may  prove  to  be  useful.  Hence,  the  researchers  are  focusing  their  attention  on  both  ways 
 to  spot  the  non-motor  symptoms  that  manifest  at  an  early  stage  and  have  the  potential  to  delay  the 
 progression  of  the  disease  (Ehgoetz  et  al.,  2018).  The  methods  currently  in  vogue  for  diagnosing  PD 
 are  a  bit  cumbersome.  It  involves  invasive  techniques  like  Deep  Brain  Stimulation  (DBS)  that  are 
 very  expensive.  Studies  have  revealed  that  PD  can  precede  the  development  of  non-motor 
 symptoms  and  about  90%  of  PD  patients  experience  voice  disorders  (Sakar,  et  al.,  2010).  Voice 
 recordings  provide  an  effective  non-invasive  diagnostic  tool  because  PD  patients  exhibit  distinct 
 vocal features. 

 The  methods  that  are  in  practice  rely  on  machine  learning  models  using  voice  data  due  to 
 their  simplicity  and  non-invasive  methods  of  acquiring  data.  The  objective  metrics  for  the  detection 
 of  speech  changes  in  PD  occur  before  the  overt  motor  symptoms.  This  presents  a  promising  avenue 
 of  research  in  the  detection  of  PD  at  a  prodromal  stage  (Iyer,  et.  al.,  2023;  Postuma,  et  al.,  2016). 
 Even  though  they  are  useful  in  predicting  the  disease  their  effectiveness  is  questionable.  This  calls 
 for  further  innovative  techniques  using  deep  learning  technologies  to  be  introduced  which  can  deal 
 with  multi-dimensional  and  semi-structured  data  that  cannot  be  analyzed  effectively  with  machine 
 learning algorithms (Gupta, et al., 2023). 

 Several  deep  neural  networks  and  hybrid  models  were  proposed  and  tried  in  an  attempt  to 
 improve  performance  and  scalability.  Even  though  the  deep  learning  models  outperformed  the 
 traditional  machine  learning  models  they  suffered  from  a  major  problem  of  over-fitting.  This 
 normally  occurs  due  to  a  lack  of  clean  data  for  training,  models  with  high  variance,  limited  training 
 data,  and  the  complexity  of  the  deep  neural  networks.  The  experimental  studies  conducted  using  a 
 simple  Artificial  Neural  Network,  Recurrent  Neural  Network  with  Long-Short  Term  Memory,  and 
 Gated  Recurrent  Unit  Networks  with  the  Parkinson’s  dataset  revealed  that  the  dataset  used  for 
 training  the  model  was  limited  (Rehman,  et  al.,  2023).  Hence,  it  necessitated  the  need  to  augment 
 data  to  yield  better  and  more  accurate  results.  Many  data  augmentation  techniques  can  be  employed 
 but  none  of  them  produce  new  data  samples.  This  paved  the  way  to  choose  a  special  type  of 
 framework  for  approaching  generative  artificial  intelligence  namely  GAN  (Generative  Adversarial 
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 Network) to be tested for this study. 
 Generative  Adversarial  Networks  (Li  et  al.,  2021)  offer  a  novel  method  for  data 

 augmentation  that  produces  new  data  samples.  There  has  been  a  renewed  interest  in  GANs  owing  to 
 their  versatility  and  ease  with  which  they  can  be  applied  in  various  domains.  GAN  has  been 
 extensively  studied  in  a  multitude  of  domains  such  as  music,  computer  vision,  and  arts.  It  takes 
 random  noise  from  a  latent  space  and  produces  data  that  mimics  the  feature  distribution  of  the 
 original dataset. GAN consists of two networks, a Generator G(x), and a Discriminator D(x). 

 They  both  play  an  adversarial  role  where  the  generator  tries  to  deceive  the  discriminator  by 
 generating  data  that  resembles  the  training  set,  while  the  discriminator  avoids  being  deceived  by  the 
 generator  by  identifying  the  fake  or  synthetic  data  from  the  actual  data.  They  work  in  tandem  and 
 get trained with high-dimensional data like video, images, and audio. 

 Since  the  study  was  based  on  binary  classification,  we  need  to  create  generated  data  samples 
 belonging  to  two  different  classes.  Hence,  a  special  type  of  GAN  model  called  Conditional  GAN 
 (CGAN)  was  proposed  for  this  study.  After  applying  sampling  using  uniform  or  normal  distribution, 
 the  random  noise  is  passed  to  the  generator  along  with  a  conditional  vector  that  represents  the  class. 
 The  generator  creates  synthetic  or  fake  data  which  mimics  the  original  dataset.  The  output  of  the 
 generator  is  passed  to  the  discriminator  along  with  the  real  data  from  the  original  dataset  and  the 
 conditional  vector.  The  discriminator  learns  how  to  classify  real  and  fake  data.  The  output  D(x)  is 
 the  probability  that  the  input  is  real  or  fake.  If  the  input  is  real,  the  D(x)  would  give  output  1  and  if 
 it is generated, the D(x) would give output 0. 

 Our proposed model is designed to achieve the following objectives: 
 1.  This  study  adopted  a  resampling  technique  to  balance  the  highly  imbalanced  Parkinson’s  disease 
 dataset.  Moreover,  with  these  techniques,  the  problem  of  model  over-fitting  can  be  solved  and  its 
 overall performance improves. 
 2.  Data  augmentation  is  incorporated  by  utilizing  CGAN,  which  to  a  large  extent  can  reduce  the 
 problem  of  over-fitting  in  deep  neural  networks.  This  is  made  possible  by  extending  the  small 
 dataset  which  when  applied  to  deep  neural  networks  limits  the  performance  of  the  model  in 
 predicting the results. 
 3. The comparison of our model with other state-of-the-art deep learning 
 models are carried out. 

 Further,  the  paper  is  structured  as  follows:  II.  Related  work,  III.  Materials  and  Methods,  IV. 
 Working  Methodology,  V.  Results  and  Discussion,  VI.  Conclusions  and  VII.  Limitations  of  the 
 study and future perspectives. 

 2. Related work 
 Generative  Adversarial  Networks  (GANs)  are  a  novel  architecture  that  can  produce 

 authentic  data  that  closely  correlates  with  the  training  data  they  are  exposed  to.  GAN  is  composed 
 of  two  neural  networks,  namely  a  generator  and  discriminator  which  engage  in  a  competitive 
 gaming environment (Pradhyumna, & Mohana., 2022). 

 Even  though  its  utilization  in  the  health  care  sector  is  rising  steadily  it  is  not  keeping  pace 
 with  the  growth  in  other  sectors.  It  encompasses  a  wide  range  of  applications  in  this  area  according 
 to  the  study  (Karras,  et  al.,  2020).  One  of  the  key  benefits  of  using  GAN  in  the  medical  field  is  its 
 capacity  to  produce  artificial  healthcare  data  that  closely  emulates  the  original  data.  This  trait  of 
 GAN  carries  paramount  importance  in  safeguarding  data  privacy  and  maintaining  confidentiality  in 
 the healthcare sector (Ghosheh, et al., 2022). 

 The  generation  of  synthetic  medical  data  without  losing  confidentiality,  preserving  data 
 privacy,  and  its  capability  to  extend  the  availability  of  data  make  it  more  appealing  in  the  healthcare 
 industry.  Issues  like  patient  consent,  data  privacy,  and  the  risk  of  using  synthetic  data  in 
 decision-making  processes  are  not  pertinent  at  this  juncture  of  this  study,  since  it  has  been  retrieved 
 from  a  secondary  source(Sakar,  et  al.,  2018).  The  utilization  of  simulated  environments  helps 
 researchers  in  designing  authentic  and  regulated  settings  for  the  evaluation  of  algorithms  and 
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 models. This obviates the need for obtaining genuine patient data. 
 Data  augmentation  is  a  widely  employed  technique  in  the  field  of  data  science.  It  helps  in 

 expanding  the  size  of  available  data  and  increasing  the  diversity  of  a  given  dataset  through  the 
 application of different techniques in the existing data (Garcea, et al., 2022). 

 Revelations  were  made  in  the  study  (Kamran,  et  al.,  2021)  for  the  early  detection  of 
 Parkinson’s  Disease  involving  deep  generative  adversarial  networks.  In  another  work  (Karras,  et  al., 
 2020)  an  attempt  was  made  to  train  GAN  using  accelerometer  data  collected  from  wearable  sensors. 
 The  study  showed  that  this  network  can  accurately  record  movement  patterns  that  serve  as 
 indicators of Parkinson’s disease. This results in timely identification and intervention. 

 In  the  study  (Kaur,  et  al.,  2021)  analysis  of  voice  samples  was  used  to  detect  Parkinson’s 
 Disease  in  an  early  stage.  The  approach  used  in  this  work  was  based  on  GAN  combined  with  a  deep 
 neural  network  (DNN).  In  this  study,  GAN  was  proposed  to  create  a  synthetic  data  package  for  the 
 numerical  dataset  and  to  produce  a  classifier  using  the  hybrid  dataset.  Experimental  tests  have 
 shown  more  acceptable  results  than  conventional  approaches.  Using  GAN-based  augmentation  an 
 increase of 11.68% could be achieved compared to the traditional methods. 

 In  the  study  (Peppes  et  al.,  2023)  the  FoGGANs  architecture  proved  to  be  a  very  useful  tool 
 for  data  augmentation  in  the  context  of  PD  by  generating  realistic  Parkinson’s  Disease  freezing  of 
 gait  dataset.  This  could  address  the  problem  of  data  shortage  in  many  studies  related  to 
 neurodegenerative diseases. 

 The  results  obtained  from  various  studies  emphasize  the  potential  of  Generative  Adversarial 
 Networks  (GANs)  in  the  prediction  and  identification  of  Parkinson's  disease.  This  is  made  possible 
 by  exploiting  the  innate  property  of  data  augmentation  of  GANs.  This  in  turn  helps  in  extending  the 
 dataset  by  adding  synthetic  or  generated  data  to  the  original  one.  By  applying  this  newly  accrued 
 dataset  to  deep  learning  models  we  can  exhilarate  the  performance  of  these  models.  Thus,  it  paves 
 the  way  for  the  creation  of  a  comprehensive  predictive  model,  which  acts  as  an  impetus  for  carrying 
 out this study. 

 3. Materials and Methods 

 3.1. Data Collection 
 The  dataset  is  obtained  from  the  Department  of  Neurology  in  Cerrahpasa,  Faculty  of 

 Medicine  of  Istanbul  University  which  was  made  available  from  the  UCI  Learning  repository 
 (Sakar,  et  al.,  2018).  It  contains  a  total  of  252  cohorts  out  of  which  188  are  PD  patients  and  64  are 
 healthy  individuals.  There  are  about  754  total  attributes.  The  subjects  of  the  study  were  directed  to 
 repeat  the  vowel  /a/  for  three  consecutive  periods.  A  microphone  with  44.1KHZ  frequency  was  used 
 to record this sustained phonation. 

 The  physicians  validated  this  data  by  applying  various  signal  processing  algorithms  such  as 
 Time-Frequency  Features,  Mel  Frequency  Cepstral  Coefficients  (MFCCs),  Wavelet  Transform 
 Features,  Vocal  Fold  Features,  and  TWQT  features  have  been  applied  to  the  speech  recordings  of 
 Parkinson's  Disease  (PD)  patients  to  extract  clinically  useful  information  for  PD  assessment.  The 
 signal  processing  algorithms  converted  the  voice  signals  into  different  classes  of  features  or 
 attributes  which  when  subjected  to  machine  learning,  deep  learning  algorithms  can  help  researchers 
 in  finding  useful  insights.  The  dataset  thus  created  contained  different  classes  of  features  which 
 were  termed  as  baseline  and  advanced.  Some  of  the  advanced  classes  of  features  included  Vocal 
 Fold,  Mel  Frequency  Cepstral  Coefficients  (MFCCs),  Tunable  Q-  factor  Wavelet  Transform 
 (TWQT),  etc.  To  extract  the  baseline  features,  a  special  acoustic  analysis  software  named  Praat  was 
 used (Hoq, et al., 2021). 

 3.2. Data Preparation and Preprocessing 
 The  preparation  and  pre-processing  of  data  is  a  very  important  phase  that  needs  to  be 

 implemented  carefully  before  we  create  the  model  and  train  it.  Here,  the  data  were  processed  by 
 checking  the  missing  values  and  null  values.  For  normalizing  the  values  in  the  dataset,  the  Standard 
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 Scalar  function  was  employed.  Correlation  was  applied  to  reduce  the  dimensionality  problem.  This 
 is  achieved  by  creating  a  correlation  matrix  that  identifies  the  parameters  that  have  a  high  degree  of 
 correlation that need to be eliminated by reducing the features in the dataset. 

 When  features  in  a  dataset  are  highly  correlated  (with  a  correlation  coefficient  greater  than 
 0.6  in  this  case),  it  indicates  that  these  features  convey  similar  information.  Keeping  both  features 
 doesn't  add  significant  new  information  but  can  increase  computational  complexity  and  the  risk  of 
 overfitting.  Identifying  and  removing  one  feature  from  each  highly  correlated  pair  reduces 
 redundancy,  diminishes  overfitting,  and  enhances  efficiency  by  decreasing  computational  workload 
 by  speeding  up  the  model  training  and  prediction  process.  Overfitting  in  neural  network  means  that 
 the  model  memorizes  the  training  data  instead  of  learning  general  patterns  resulting  in  poor 
 performance  on  new  unseen  data.  The  concept  of  overfitting  in  neural  networks  was  first  postulated 
 by  Minsky,  M.  &  Papert,  S.  A.  in  1969  in  their  paper  titled  “Perceptrons:  An  introduction  to 
 Computational  Geometry”  (Minsky  &  Papert,  1969).  In  essence,  by  dropping  highly  correlated 
 features,  we  can  streamline  our  dataset  to  contain  the  most  relevant  and  distinctive  information, 
 optimizing model performance and interpretability. 

 A  heat  map  was  generated  with  the  help  of  the  correlation  coefficients  with  values  ranging 
 from  -1  to  +1.  A  correlation  heat  map  is  a  graphical  representation  that  displays  the  correlation 
 between  multiple  variables  as  a  color-coded  matrix.  Positive  correlations  are  represented  by  brighter 
 colors  indicating  that  when  one  variable  increases,  the  other  tends  to  increase  as  well.  Negative 
 correlations  are  shown  with  darker  colors,  suggesting  that  when  one  variable  increases,  the  other 
 tends  to  decrease.  This  visualization  is  particularly  useful  for  identifying  highly  correlated  or 
 inversely correlated variables. 

 Resampling  is  done  to  the  resultant  matrix  obtained  after  applying  correlation.  Since  the 
 majority  of  the  dataset  consisted  of  PD  patients  compared  to  healthy  individuals  a  uniform 
 distribution  method  was  applied  to  balance  it.  A  resampling  technique  was  applied  for  feature 
 reduction.  This  could  reduce  the  features  to  384  records  and  197  attributes.  This  reduction  aimed 
 to  enhance  model  efficiency  and  interpretability  by  focusing  on  the  most  informative  features  while 
 discarding  redundant  or  less  significant  ones.  The  dataset  used  for  the  study  is  an  imbalanced  one 
 with  two  classes  –  class  1  (with  PD)  and  class  2  (without  PD).  Out  of  which  class  1  had  more 
 matching  records.  To  overcome  this  problem  of  imbalanced  datasets,  a  resampling  technique  called 
 stratified  cross-fold  validation  (Ron  et  al.,1995)  is  applied.  It  ensures  that  each  fold  has  the  same 
 proportion  of  classes  as  the  original  dataset.  This  leads  to  more  reliable  and  consistent  performance 
 metrics  across  folds.  By  maintaining  the  class  distribution  in  each  fold,  the  model  is  exposed  to  a 
 similar  class  balance  in  training  and  validation,  making  it  more  likely  to  generalize  well  to  unseen 
 data.  This  helps  to  avoid  overfitting  to  a  particular  class  distribution  and  ensures  that  the  model's 
 performance  metrics  (e.g.,  accuracy,  precision)  are  more  representative  of  its  performance  on  the 
 actual distribution of the target variable. This consistency is crucial for reliable model evaluation. 

 4. Working methodology 

 4.1. CGAN Architecture 
 The  architecture  of  CGAN  is  composed  of  two  neural  networks,  the  generator,  and  the 

 discriminator  as  shown  in  (see  Figure  1).  They  are  always  competing  with  each  other  in  a  game-like 
 pattern.  The  goal  of  the  generator  is  to  create  synthetic  data  which  mimics  real  data  whereas  the 
 discriminator assesses the veracity of the data which were fed into it. 

 Essentially,  generative  models  create  their  training  data.  When  training  begins,  the  generator 
 produces  fake  data  by  taking  noise  as  input  from  latent  space  along  with  the  class  or  category  as  a 
 conditional  vector.  Artificial  intelligent  systems  process  input  data,  identify  patterns  and 
 relationships,  and  then  organize  this  information  in  latent  space  for  easy  access.  This  helps  these 
 systems  in  making  better  predictions,  generate  new  data,  or  classify  information  efficiently.  The 
 output  of  the  generator  is  connected  directly  to  the  discriminator’s  input.  The  discriminator  also 
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 receives  instances  from  the  original  dataset  and  the  conditional  vector  during  its  training  period.  As 
 training  progresses,  the  generator  gets  closer  in  producing  output  that  can  deceive  the  discriminator. 
 The  discriminator  learns  not  to  be  fooled  by  the  generator’s  synthetic  data  from  real  data.  The 
 generator  and  discriminator  loss  has  to  be  reduced  to  build  an  efficient  CGAN  model.  The 
 discriminator  after  classification  sends  a  signal  to  the  generator  through  backpropagation  to  update 
 its  weights.  As  the  feedback  loop  between  the  adversarial  networks  continues,  the  generator  will 
 begin  producing  high-quality  and  more  realistic  output  and  the  discriminator  will  become  better  in 
 classifying the real and fake ones. 

 Figure 1. Architecture of CGAN Model 

 4.2. Implementation of CGAN 
 The  CGAN  model  architecture  consists  of  two  sub-models:  a  generator  and  a  discriminator. 

 The  generator  model  is  used  to  create  synthetic  data  from  the  problem  domain  whereas  the 
 discriminator  model  is  used  to  classify  real  data  from  fake  (generated)  ones.  The  CGAN  training 
 algorithm trains both generator and discriminator models separately. 

 The dataset involved in the study is obtained from the UCI machine 
 learning  repository  (Sakar,  et  al.,  2018)  which  has  voice  attributes  of  patients  suffering  from 
 Parkinson’s  disease  and  healthy  cohorts.  The  initial  speech  samples  were  divided  into  training  and 
 test  sets.  To  build  a  CGAN  model  we  created  separate  generative  and  discriminative  models  and 
 combined  it  to  form  the  basic  CGAN  architecture.  The  trained  CGAN  generator  produces  synthetic 
 samples  using  noise  from  latent  space  and  conditional  vectors  that  represent  the  class  or  category. 
 The  real  samples  from  the  training  set,  conditional  vectors  along  with  the  synthetic  samples  from 
 the  generator  were  fed  to  the  discriminator.  It  has  to  properly  filter  out  these  samples.  Both  models 
 were  combined  to  build  the  CGAN  that  produces  the  synthetic  data  that  closely  resembles  the 
 original  data,  thus  helping  in  achieving  data  augmentation.  The  output  of  CGAN  is  used  for 
 classifying  PD  with  the  help  of  a  classifier.  In  this  model,  we  have  used  RNN-LSTM  as  the 
 classifier. 

 4.2.1. Generator network 
 The  generator  network  can  be  defined  as  a  function  G:  (Z/Y)  →  x̄,  which  has  as  input  data 

 (random  noise)  z  e  Z  and  the  conditional  vector  Y  that  produces  an  output  x̄  e  X̅.  The  generator 
 network  G  is  an  artificial  neural  network,  which  takes  random  noise  as  input  (input  dimension  or 
 l-dimension)  along  with  the  conditional  vector  to  generate  synthetic  data  samples  as  output.  Leaky 
 ReLU  was  used  as  an  activation  function  and  batch  normalization  was  applied  at  each  layer  except 
 the last one which uses tanh for activation. 
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 Algorithm: The Generator network 
 1.  Input: - Random noise (Z), conditional vector(Y) 

 Output : Synthetic data similar to actual dataset x̄ 
 2.  define_generator(l_dim) 
 3.  for i in the range do 
 4.  model.add(dense(nodes,l_dim=100) 
 5.  model.add(LeakyReLU) 
 6.  model.add(BatchNormalization) 
 7.  model.add(dense(1024)) 
 8.  model.add(LeakyReLU) 
 9.  model.add(dense(nodes, tanh)) 
 10.  return generator model 

 4.2.2. Discriminator Network 
 The discriminative network implements a function: 
 D:  (x1,x,y)  →  [0,1].  This  network  takes  input  as  the  generated  data  x1  e  X̅  (from  the 

 generator),  x  e  X.  (real  data  set),  y  e  Y  (conditional  vector)  and  gives  output  as  a  binary  value  [0,1] 
 deciding  whether  the  data  is  real  or  generated.  The  D(x,y)  shows  the  real  data  as  output  and 
 D(G(z,y),y))  shows  the  fake  data  as  output.  Leaky  ReLU  was  used  as  an  activation  function  in  all 
 layers  except  the  output  layer  which  uses  sigmoid  as  an  activation  function.  The  loss  function  used 
 in  the  model  is  binary  cross-entropy  which  was  used  as  output  of  the  model  and  has  a  probability  of 
 0  or  1.  Binary  cross  entropy  is  a  loss  function  used  in  machine  learning,  particularly  for  binary 
 classification  problems.  It  measures  the  difference  between  predicted  probabilities  and  actual  labels. 
 The  concept  of  cross-entropy  originated  in  information  theory  introduced  by  Claude  Shannon  in  his 
 1948  paper  titled  “A  Mathematical  Theory  of  Communication”  (Shannon,  et  al.,  1948).  This 
 method  was  popularized  in  the  90’s  for  neural  networks,  particularly  in  the  context  of  logistic 
 regression.  Some  notable  researchers  who  contributed  to  its  development  and  applications  in 
 machine  learning  include  David  Rumelhart,  Geoffrey  Hinton,  and  Ronald  Williams  in  the  year 
 1986 (Rumelhart, et al., 1986). 

 Algorithm: The Discriminator network 
 1.  Input: Synthetic data created by the generator 

 network(x̄),real data (x) and  conditional 
 vector (y) 

 Output: Class label 1 for original data and 0 for 
 generated data 

 2.  define discriminator(X) 
 3.  for i in the range do 
 4.  model.add(dense(1024,X)) 
 5.  model.add(LeakyReLU) 
 6.  model.add(dense(512)) 
 7.  model.add(LeakyReLU) 
 8.  model.add(dense(1, sigmoid)) 
 9.  return discriminator model 

 4.2.3. Building CGAN 
 In  this,  a  CGAN  is  created  by  stacking  the  generator  and  discriminator  networks.  First,  we 

 set  the  trainable  parameter  of  the  discriminator  network  to  false.  This  helps  in  freezing  the  weights 
 in  the  discriminator  network  while  the  generator  network  is  trained.  This  prevents  the  discriminator 
 from  being  updated  while  the  generator  creates  new  samples  using  noise  and  the  conditional  vector. 
 The  input  dimension  or  shape  passed  to  the  CGAN  network  is  the  shape  of  noise,  which  is  passed  to 
 the  generator.  The  generator’s  output  is  fed  to  the  discriminator,  which  classifies  the  data  as  original 
 or fake. Finally, the CGAN produces synthetic samples which mimic the original data. 
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 Algorithm: Building CGAN model 
 1.  Input  :  generator, discriminator 

 Output : generated data mimicking  original data 
 2.  define  build_cgan(generator, discriminator) 
 3.  set discriminator.trainable =false 

 cgan_inp =Input(input_dim=100) 
 4.  x= generator(cgan_inp) 
 5.  cgan_out = discriminator(X) 
 6.  gan model= call build_cgan(input=cgan_inp, outputs=cgan_out) 
 7.  return cgan model 

 4.2.4. Classifier for Prediction 
 The  output  of  CGAN  consisting  of  generated  data  that  mimics  the  real  data  is  combined 

 with  the  original  dataset  to  create  a  new  hybrid  dataset  which  is  then  fed  to  the  RNN  -LSTM 
 classifier to distinguish PD patients from healthy cohorts. 

 Algorithm: Deep Learning Classifier using RNN (LSTM) 
 1.  Input: Combined dataset created using synthetic  data 

 generated by the CGAN model and real dataset is 
 passed as input_shape 

 Output: Class label 1 for PD patients and 0 for healthy cohorts 
 2. model = sequential () // deep learning classifier initialization 
 3. model.add(LSTM(64, input_shape)) 
 4. model.add(SpatialDropoutID(0.2)) 
 5.  model.add(LSTM(32,dropout=0.2,recurrent-dropout=0.2)) 
 6.  model.add(dense(1, sigmoid)) 
 7.  final_model = model.fit(input_shape) 
 8. predicted_result = final_model. predict(test_sample) 
 9. return predicted_result 

 4.2.5. Training CGAN model 
 The  discriminator  is  designed  to  correctly  classify  the  actual  and  synthetic  data.  This  is 

 made  possible  by  maximizing  the  log  of  the  inverted  probability  of  fake  data  and  the  log  of  the 
 predicted  probability  of  real  data.  These  are  averaged  over  each  mini-batch  of  sample  data.  The  loss 
 function  of  the  discriminator  searches  for  probabilities  that  are  close  to  1.0  for  actual  data  and 
 probabilities  close  to  0.0  for  synthetic  data  which  then  invert  and  become  larger  numbers.  The 
 addition  of  these  values  indicates  that  a  lower  average  value  of  this  loss  function  can  lead  to  better 
 performance  of  the  discriminator.  The  generator  is  trained  with  the  intention  of  stimulating  the 
 discriminator  to  predict  the  generated  data  to  be  real  with  high  probability.  This  is  done  by  adjusting 
 the  generator’s  weights  through  the  discriminator  by  setting  class  labels  of  1  for  the  generated  data. 
 No  changes  are  made  to  the  discriminator  throughout  this  process.  The  gradient  information 
 required  to  adjust  the  generator’s  weights  is  passed  as  input.  For  example,  if  the  discriminator 
 predicts  a  low  average  probability  for  the  batch  of  synthetic  data,  this  results  in  large  error  signal 
 due  to  high  generator  loss  being  propagated  backward  into  the  generator  as  the  expected  probability 
 value  is  1.0  for  the  real  samples.  These  large  error  signals  indicate  the  generator  to  improve  its 
 prediction  rates  by  adjusting  the  weights  and  enhancing  its  ability  to  generate  fake  samples  that 
 closely  resemble  real  ones  in  the  subsequent  batches.  The  training  of  the  generator  and 
 discriminator  continues  until  it  reaches  a  point  of  saturation,  where  no  further  improvement  in  the 
 performance  of  either  neural  network  is  expected.  At  this  point,  the  loss  of  generator  and 
 discriminator  would  have  been  reduced  to  a  bottom  level  which  is  not  subject  to  changes.  This 
 marks  the  end  of  CGAN’s  training.  The  results  obtained  conform  to  the  real  data.  This  generated 
 data  is  combined  with  the  original  data  and  can  be  fed  to  any  classifier  to  predict  the  outcome.  In 
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 this study RNN -LSTM is implemented for the classification of PD patients from healthy cohorts. 

 4.2.6. CGAN Loss Function 
 In  the  paper  by  Ian  Goodfellow  (Goodfellow  et  al.,  2014)  the  standard  GAN  loss  function 

 was described initially which can be represented as follows 

 (1) 

 The  above  equation  represents  the  standard  loss  function  of  GAN.  For  our  model  CGAN  the 
 objective function can be denoted as shown below 

 (2) 

 Here E is used to indicate the expected value of a random variable. 

 - denotes the expected value with respect to actual  data 
 distribution 

 -  denotes the expected value with reference to  the prior 
 noise distribution  p  z  (z) 

 The  aim  is  to  simultaneously  minimize  the  generator’s  ability  to  deceive  the  discriminator 
 and maximize the discriminator’s ability to accurately classify real and synthetic samples. 

 The  term  [log  D  (x|y)]  encourages  the  discriminator  to  precisely  classify  real  samples 
 whereas  the  term  [log(1-  D  (  G  (z|y))]  encourages  the  generator  to  create  samples  that  are  accurately 
 classified  as  real  by  the  iscriminator.  This  creates  a  balance  in  which  the  generator  can  refine  its 
 ability  to  generate  realistic  samples,  and  the  discriminator  becomes  more  adept  at  classifying 
 between  real  and  generated  samples.  It  can  be  further  classified  into  two  parts  –  the  discriminator 
 loss and the generator loss. 

 4.2.7. Discriminator Loss Function 
 The  discriminator  is  trained  to  distinguish  both  the  actual  data  from  the  dataset  and  the 

 synthetic  data  from  the  generator.  The  discriminator's  loss  is  a  measure  of  how  well  it  can  be 
 differentiated  between  the  two.  The  most  popular  loss  function  for  the  discriminator  in  a  CGAN  is 
 the  binary  cross-entropy  loss.  It  compares  the  discriminator's  predictions  with  the  true  labels  (0  for 
 real  samples  and  1  for  generated  samples)  and  calculates  the  loss  accordingly.  The  formula  for 
 binary cross-entropy loss is as follows: 

 loss = -sum(y_true * log(y_pred) + (1 – y_true) * log(1 - y_pred))     (3) 

 Here,  y_true  represents  the  true  labels  and  y_pred  represents  the  discriminator's  predictions. 
 The  aim  is  to  minimize  this  loss,  which  indicates  that  the  discriminator  is  becoming  more 
 accurate in distinguishing 
 between real and generated samples. 

 4.2.8. Generator Loss Function 
 The  generator  aims  to  create  realistic  samples  that  can  deceive  the  discriminator.  Its  loss  is 

 inversely related to the discriminator's loss. In other 
 words,  the  generator  tries  to  minimize  the  discriminator's  ability  to  distinguish  between  actual  and 
 generated  samples.  The  generator's  loss  in  a  CGAN  is  calculated  using  binary  cross-entropy. 
 However,  the  labels  for  the  generated  samples  are  inverted  compared  to  the  discriminator's  loss.  The 
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 formula for the generator's loss is as follows: 

 loss = -sum((1 - y_true) * log(y_pred))  (4) 

 Here,  y_true  represents  the  inverted  labels  for  the  generated  samples,  and  y_pred 
 represents  the  discriminator's  predictions  for  those  samples.  By  minimizing  the  loss,  the  generator 
 learns  to  generate  samples  that  have  more  probability  to  be  categorized  as  real  by  the  discriminator. 
 Based  on  the  the  ability  of  the  discriminator  to  classify  the  real  and  fake  data,  the  probability  score 
 of  either  0  (fake)  or  1(real)  is  determined.  This  probability  of  prediction  by  discriminator  is  used  to 
 calculate  the  generator  loss.  If  the  generator  can  successfully  deceive  the  discriminator,  it  will  be 
 rewarded,  if  not  it  will  be  penalized.  The  generator  gets  trained  by  adjusting  the  parameters  to 
 maximize  the  log  of  the  discriminator  probabilities.  Eventually,  the  generator  tries  to  maximize  the 
 probability  of  the  data  being  real  rather  than  minimizing  the  probability  of  the  data  being  fake.  The 
 generator tries to minimize the GAN loss function meanwhile the discriminator tries to maximize it. 

 5. Results and Discussions 

 5.1. Performance Analysis 
 The  adoption  of  a  Generative  Adversarial  Network  (CGAN)  for  Parkinson's  disease 

 prediction  represents  an  innovative  approach,  integrating  generative  and  discriminative  modelling 
 within  a  unified  framework.  The  CGAN  architecture  harnesses  deep  learning  capabilities  to 
 generate  synthetic  data,  enhancing  overall  model  performance.  This  work  addresses  the  limited  size 
 of  the  Parkinson’s  disease  dataset  by  using  Conditional  Generative  Adversarial  Networks  (CGAN) 
 to  generate  fake  data.  The  data  generated  is  combined  with  the  original  dataset  to  create  a  large  and 
 more  diverse  dataset.  Subsequently,  a  Recurrent  Neural  Network  (RNN)  with  Long  Short-Term 
 Memory  (LSTM)  units  is  implemented  for  the  predictive  analysis  of  Parkinson’s  disease.  The 
 trained  model  is  evaluated  for  its  accuracy  in  predicting  the  disease,  potentially  contributing  to 
 improved understanding and management of Parkinson’s disease. 

 Accuracy  and  precision  were  used  as  the  performance  metrics  to  measure  the  model’s  ability 
 to  correctly  classify  PD  cases.  The  dataset  obtained  on  applying  CGAN  is  used  for  augmenting  the 
 original  dataset  and  the  combined  dataset  was  used  to  train  the  RNN-LSTM  classifier  to  yield  a 
 good  precision  score  of  0.8792  for  training  and  0.8994  for  testing.  The  following  plot  (see  Figure  2) 
 shows  the  precision  of  the  model  obtained  during  the  training  and  testing  phases.  The  plot  (see 
 Figure 3) shows the accuracy scores of the model on applying CGAN. 

 Figure 2. Performance of the model based on precision with CGAN 
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 Figure 3. Performance of the  model based on  accuracy with CGAN 

 The  binary  cross  entropy  was  applied  as  the  loss  function  to  calculate  the  loss  during  the 
 testing  and  training  phases.  The  following  plot  (see  Figure  4)  depicts  the  loss  during  the  training 
 and  testing  phases.  The  final  loss  obtained  during  training  is  0.2974  and  testing  is  0.2884  which  is 
 considerably  small.  This  is  a  good  indication  when  we  take  into  account  the  performance  of  the 
 model. 

 Figure 4. Training and testing loss 

 Figure 5. Discriminator and Generator loss 

 The  discriminator  and  generator  loss  on  applying  CGAN  is  shown  in  (see  Figure  5).  The 
 generator  (0.01)  and  discriminator  (0.9)  loss  indicates  that  the  generator  was  successful  in 
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 generating  data  that  closely  resembles  the  original  dataset.  This  augmented  data  was  combined  with 
 the  original  dataset  to  produce  a  diverse  dataset  which  was  used  for  training  the  RNN-LSTM 
 classifier. 

 Table 1 summarizes the accuracy score obtained for the RNN-LSTM model with and 
 without data augmentation. With data augmentation, the model’s performance could be improved 
 considerably. 

 Table 1.Performance of the RNN-LSTM with and without data augmentation 

 5.2. Comparison with other deep neural networks 
 Table  2  summarizes  the  performance  of  different  deep-learning  models  implemented  with 

 the  Parkinson’s  speech  dataset.  On  analyzing  the  results  obtained  as  shown  in  Table  2  we  conclude 
 that  even  though  the  ANN  model  showed  a  high  train  accuracy  compared  to  other  models  it  showed 
 overfitting  as  the  difference  between  training  and  testing,  accuracies  were  more  compared  to  other 
 models.  GRU  models  could  eliminate  the  problem  of  overfitting  and  could  achieve  a  reasonably 
 good  performance  but  it  suffered  from  a  high  training  loss.  RNN-  LSTM  classifier  showed  the  best 
 performance  among  these  three  models  with  fairly  good  accuracy  and  precision  without  much  loss. 
 Implementing  data  augmentation  using  CGAN  the  model  could  significantly  improve  the  results  in 
 terms  of  accuracy  and  precision.  The  model’s  earlier  issue  of  overfitting  could  be  solved  using  the 
 standard method for data augmentation through the application of CGAN. 

 Table 2 . Comparison of performance with other deep learning models 

 6. Conclusion 
 Parkinson’s  Disease  is  a  progressive  degenerative  disease  that  affects  the  brain,  the 

 pathogenicity  of  which  is  still  unresolved.  Many  unexplained  attributes  need  to  be  investigated.  The 
 researchers  despite  their  enormous  influx  of  efforts  have  not  been  able  to  clinch  the  prime  attributes 
 that  are  responsible  for  this  disease.  Parkinson’s  Disease  shares  similar  symptoms  with  many  other 
 neurological  diseases.  Therefore,  it  is  difficult  to  identify  the  disease  in  its  early  stages.  Various 
 studies  were  conducted  for  diagnosing  PD  at  an  early  stage  using  voice  and  speech  attributes.  This 
 has  proved  worthwhile  owing  to  its  non-invasive,  inexpensive,  and  simple  methods  for  acquiring 
 datasets. 

 This  study  is  intended  to  focus  on  the  problem  of  overfitting  which  results  from  training  the 
 deep  learning  models  using  a  relatively  limited  dataset.  The  solution  for  this  was  a  generalized 
 method  for  data  augmentation.  The  conditional  generative  adversarial  networks  proved  to  be  a 
 conducive  and  efficient  method  for  generating  synthetic  data  that  mimics  the  original  data.  This 
 technique  could  eliminate  the  problem  of  overfitting  and  the  results  showed  significant 
 improvement  in  the  performance  of  the  model  (RNN-LSTM  classifier)  in  the  prediction  of 
 Parkinson’s Disease. 
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 Model  Training Accuracy  Testing Accuracy 
 RNN-LSTM 

 (without data augmentation)  80  76 

 RNN-LSTM 
 (with data augmentation 

 using CGAN) 
 87  86 

 Models  cy 
 Testing 

 Accuracy 
 Training 
 Precision  n  Training Loss 

 Testing 
 Loss 

 ANN  91  83  92  87  0.2623  0.403 
 RNN- LSTM  80  76  81  81  0.4498  0.5014 

 GRU  75  75  75  75  0.20651  0.5949 
 CGAN with RNN- LSTM  86  87.92  89.94  0.2974  0.2884 
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 7. Limitations and Future Perspectives 
 Even  though  the  study  could  enhance  the  performance  of  the  model  by  eliminating  the 

 problem  of  overfitting  it  could  not  succeed  in  extricating  the  attributes  that  have  a  high  propensity 
 for  Parkinson’s  Disease.  This  study  has  opened  new  vistas  in  the  application  of  data  augmentation 
 in  identifying  Parkinson’s  Disease.  This  could  prove  useful  in  creating  a  generalized  model  while 
 dealing  with  diverse  datasets  for  Parkinson’s  Disease.  An  architecture  that  can  enhance  these 
 models  by  selectively  focusing  on  pertinent  elements  and  helps  in  improving  the  prediction 
 accuracy  and  computational  efficiency  needs  to  be  implemented.  This  should  act  as  an  impetus  for 
 further advancement in deep-learning algorithms. 

 The  present  study  is  based  on  a  limited  dataset  which  is  not  composed  of  real-time  values. 
 Therefore,  efforts  to  identify  a  large  dataset  with  real-time  data  were  made  but  it  failed  to  deliver 
 useful  results.  Hence,  we  resorted  to  augmenting  the  present  dataset.  CGAN  was  chosen  for  the 
 study.  CGAN  is  an  innovative  approach  for  data  augmentation  that  has  a  definite  advantage  over  the 
 problem  of  overfitting  and  dimensionality  reduction.  It  could  generate  more  controlled  and  diverse 
 outputs  compared  to  traditional  GANs.  Even  though  the  advantages  mentioned  above  opened  up 
 new  avenues  for  future  research,  they  have  not  succeeded  in  identifying  features  that  have 
 significant  contributions  to  predicting  the  output.  Data  complexity,  limited  interpretability  and 
 scalability,  training  and  evaluation  challenges,  etc.,  are  the  other  drawbacks  of  CGAN.  To  overcome 
 these  issues  a  new  approach  is  suggested,  which  incorporates  attention  networks  into  the  CGAN 
 architecture. 

 These  networks,  when  used  with  CGAN  for  tabular  data,  have  the  benefits  of  improved 
 feature  selection  and  representation,  enhanced  handling  of  missing  values,  increased  robustness  to 
 noisy  data,  and  better  preservation  of  data  patterns  and  relationships.  It  also  improves  the  quality  of 
 synthetically  generated  data  and  enhances  interpretability  through  feature  importance  by  assigning 
 weighted  scores  to  all  attributes  in  the  dataset.  It  also  enables  compact  data  representation  through 
 dimensionality reduction. 

 Hence,  the  drawbacks  of  CGAN  can  be  reduced  by  the  fusion  of  CGAN  with  attention 
 networks that can revolutionize future applications using Generative AI. 
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