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Abstract: Parkinson s disease is a multi-faceted disease
affecting the brain. The enormity of its recent rise is qiiile
alarming. This calls for intense research to diagnose early
to hasten the progress of diagnosis. Voice distortion is
considered an early precursor for Parkinson s disease.
Though several studies in Machine Learning using voice
parameters have provided useful information, none of
them have been successful in evolving an efficient and
generalized model to detect it. Deep Learning techniques
were applied to improve the performance of the model but
its major limitation was the size of the dataset. Hence, a
need arose to extend the dataset using an appropriate data
avgmentation method. At this juncture, the conditional
generative adversarial network (CGAN) proved to be a
useful technique because of its innate feature for
generating synthetic data from input noise. The
RNN-LSTM classifier could achieve a training accuracy of
87.32%, testing accuracy of 86.3%, training precision of
87.92 %, and testing precision of 89.94%. The results of
the experimental study are compared with other
state-of-the-art methods. This technique succeeded in
reducing the problem of over-fitting and could elevate the
performance of the RNN-LSTM classifier in the prediction
of Parkinson s disease.
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1. Introduction

Parkinson’s disease is a multifaceted neurodegenerative disease affecting more than ten
million population worldwide. Despite extensive research, a proper cure for this disease has not
been identified (Mughal et al., 2022). The pathophysiology of this disease is a reduction in the
neurotransmitter dopamine in a specific area called substantia nigra in the midbrain. The
impairment of dopaminergic systems is responsible for the PD symptoms, with the depletion of
dopaminergic neurons that causes a wide range of motor and non-motor symptoms.

Motor symptoms (Bhowmick et al., 2020) include tremors, stiffness in the extremities of the
body, postural imbalances, movement disorders, etc. which show that the disease is progressing.
The non-motor symptoms (Todorova et al., 2014) include speech and communication problems,
olfactory disturbances, sleep disorders, cognitive impairments, and dementia. However, diagnosing
PD based solely on qualitative criteria can be challenging since other diseases share similar
symptoms.

Diagnosis of PD by clinicians depends on a combination of clinical symptoms and
diagnostic tests. The diagnosis of PD is confirmed by a significant persistent effect of dopaminergic
therapy. Transcranial Sonography (TCS), Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), and Single-Photon Emission Computerized Tomography (SPECT) (Trifonova et
al., 2020; Mortezazadeh et al., 2021), etc., are the widely used non-invasive, diagnostic imaging
techniques.

Even though the current treatment helps diagnose the symptoms, they do not reduce or curb
the progression of the disease. The motor symptoms manifest as the disease progresses. If the
non-motor symptoms can be identified earlier further progression of the disease can be prevented.
Therefore, the focus is made on identifying the disease at an early stage where the non-motor
symptoms may prove to be useful. Hence, the researchers are focusing their attention on both ways
to spot the non-motor symptoms that manifest at an early stage and have the potential to delay the
progression of the disease (Ehgoetz et al., 2018). The methods currently in vogue for diagnosing PD
are a bit cumbersome. It involves invasive techniques like Deep Brain Stimulation (DBS) that are
very expensive. Studies have revealed that PD can precede the development of non-motor
symptoms and about 90% of PD patients experience voice disorders (Sakar, et al., 2010). Voice
recordings provide an effective non-invasive diagnostic tool because PD patients exhibit distinct
vocal features.

The methods that are in practice rely on machine learning models using voice data due to
their simplicity and non-invasive methods of acquiring data. The objective metrics for the detection
of speech changes in PD occur before the overt motor symptoms. This presents a promising avenue
of research in the detection of PD at a prodromal stage (Iyer, et. al., 2023; Postuma, et al., 2016).
Even though they are useful in predicting the disease their effectiveness is questionable. This calls
for further innovative techniques using deep learning technologies to be introduced which can deal
with multi-dimensional and semi-structured data that cannot be analyzed effectively with machine
learning algorithms (Gupta, et al., 2023).

Several deep neural networks and hybrid models were proposed and tried in an attempt to
improve performance and scalability. Even though the deep learning models outperformed the
traditional machine learning models they suffered from a major problem of over-fitting. This
normally occurs due to a lack of clean data for training, models with high variance, limited training
data, and the complexity of the deep neural networks. The experimental studies conducted using a
simple Artificial Neural Network, Recurrent Neural Network with Long-Short Term Memory, and
Gated Recurrent Unit Networks with the Parkinson’s dataset revealed that the dataset used for
training the model was limited (Rehman, et al., 2023). Hence, it necessitated the need to augment
data to yield better and more accurate results. Many data augmentation techniques can be employed
but none of them produce new data samples. This paved the way to choose a special type of
framework for approaching generative artificial intelligence namely GAN (Generative Adversarial
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Network) to be tested for this study.

Generative Adversarial Networks (Li et al., 2021) offer a novel method for data
augmentation that produces new data samples. There has been a renewed interest in GANs owing to
their versatility and ease with which they can be applied in various domains. GAN has been
extensively studied in a multitude of domains such as music, computer vision, and arts. It takes
random noise from a latent space and produces data that mimics the feature distribution of the
original dataset. GAN consists of two networks, a Generator G(x), and a Discriminator D(x).

They both play an adversarial role where the generator tries to deceive the discriminator by
generating data that resembles the training set, while the discriminator avoids being deceived by the
generator by identifying the fake or synthetic data from the actual data. They work in tandem and
get trained with high-dimensional data like video, images, and audio.

Since the study was based on binary classification, we need to create generated data samples
belonging to two different classes. Hence, a special type of GAN model called Conditional GAN
(CGAN) was proposed for this study. After applying sampling using uniform or normal distribution,
the random noise is passed to the generator along with a conditional vector that represents the class.
The generator creates synthetic or fake data which mimics the original dataset. The output of the
generator is passed to the discriminator along with the real data from the original dataset and the
conditional vector. The discriminator learns how to classify real and fake data. The output D(x) is
the probability that the input is real or fake. If the input is real, the D(x) would give output 1 and if
it is generated, the D(x) would give output 0.

Our proposed model is designed to achieve the following objectives:

1. This study adopted a resampling technique to balance the highly imbalanced Parkinson’s disease
dataset. Moreover, with these techniques, the problem of model over-fitting can be solved and its
overall performance improves.

2. Data augmentation is incorporated by utilizing CGAN, which to a large extent can reduce the
problem of over-fitting in deep neural networks. This is made possible by extending the small
dataset which when applied to deep neural networks limits the performance of the model in
predicting the results.

3. The comparison of our model with other state-of-the-art deep learning

models are carried out.

Further, the paper is structured as follows: II. Related work, III. Materials and Methods, I'V.
Working Methodology, V. Results and Discussion, VI. Conclusions and VII. Limitations of the
study and future perspectives.

2. Related work

Generative Adversarial Networks (GANs) are a novel architecture that can produce
authentic data that closely correlates with the training data they are exposed to. GAN is composed
of two neural networks, namely a generator and discriminator which engage in a competitive
gaming environment (Pradhyumna, & Mohana., 2022).

Even though its utilization in the health care sector is rising steadily it is not keeping pace
with the growth in other sectors. It encompasses a wide range of applications in this area according
to the study (Karras, et al., 2020). One of the key benefits of using GAN in the medical field is its
capacity to produce artificial healthcare data that closely emulates the original data. This trait of
GAN carries paramount importance in safeguarding data privacy and maintaining confidentiality in
the healthcare sector (Ghosheh, et al., 2022).

The generation of synthetic medical data without losing confidentiality, preserving data
privacy, and its capability to extend the availability of data make it more appealing in the healthcare
industry. Issues like patient consent, data privacy, and the risk of using synthetic data in
decision-making processes are not pertinent at this juncture of this study, since it has been retrieved
from a secondary source(Sakar, et al., 2018). The utilization of simulated environments helps
researchers in designing authentic and regulated settings for the evaluation of algorithms and
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models. This obviates the need for obtaining genuine patient data.

Data augmentation is a widely employed technique in the field of data science. It helps in
expanding the size of available data and increasing the diversity of a given dataset through the
application of different techniques in the existing data (Garcea, et al., 2022).

Revelations were made in the study (Kamran, et al., 2021) for the early detection of
Parkinson’s Disease involving deep generative adversarial networks. In another work (Karras, et al.,
2020) an attempt was made to train GAN using accelerometer data collected from wearable sensors.
The study showed that this network can accurately record movement patterns that serve as
indicators of Parkinson’s disease. This results in timely identification and intervention.

In the study (Kaur, et al., 2021) analysis of voice samples was used to detect Parkinson’s
Disease in an early stage. The approach used in this work was based on GAN combined with a deep
neural network (DNN). In this study, GAN was proposed to create a synthetic data package for the
numerical dataset and to produce a classifier using the hybrid dataset. Experimental tests have
shown more acceptable results than conventional approaches. Using GAN-based augmentation an
increase of 11.68% could be achieved compared to the traditional methods.

In the study (Peppes et al., 2023) the FOGGANSs architecture proved to be a very useful tool
for data augmentation in the context of PD by generating realistic Parkinson’s Disease freezing of
gait dataset. This could address the problem of data shortage in many studies related to
neurodegenerative diseases.

The results obtained from various studies emphasize the potential of Generative Adversarial
Networks (GANs) in the prediction and identification of Parkinson's disease. This is made possible
by exploiting the innate property of data augmentation of GANs. This in turn helps in extending the
dataset by adding synthetic or generated data to the original one. By applying this newly accrued
dataset to deep learning models we can exhilarate the performance of these models. Thus, it paves
the way for the creation of a comprehensive predictive model, which acts as an impetus for carrying
out this study.

3. Materials and Methods

3.1. Data Collection

The dataset is obtained from the Department of Neurology in Cerrahpasa, Faculty of
Medicine of Istanbul University which was made available from the UCI Learning repository
(Sakar, et al., 2018). It contains a total of 252 cohorts out of which 188 are PD patients and 64 are
healthy individuals. There are about 754 total attributes. The subjects of the study were directed to
repeat the vowel /a/ for three consecutive periods. A microphone with 44.1KHZ frequency was used
to record this sustained phonation.

The physicians validated this data by applying various signal processing algorithms such as
Time-Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform
Features, Vocal Fold Features, and TWQT features have been applied to the speech recordings of
Parkinson's Disease (PD) patients to extract clinically useful information for PD assessment. The
signal processing algorithms converted the voice signals into different classes of features or
attributes which when subjected to machine learning, deep learning algorithms can help researchers
in finding useful insights. The dataset thus created contained different classes of features which
were termed as baseline and advanced. Some of the advanced classes of features included Vocal
Fold, Mel Frequency Cepstral Coefficients (MFCCs), Tunable Q- factor Wavelet Transform
(TWQT), etc. To extract the baseline features, a special acoustic analysis software named Praat was
used (Hoq, et al., 2021).

3.2. Data Preparation and Preprocessing

The preparation and pre-processing of data is a very important phase that needs to be
implemented carefully before we create the model and train it. Here, the data were processed by
checking the missing values and null values. For normalizing the values in the dataset, the Standard
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Scalar function was employed. Correlation was applied to reduce the dimensionality problem. This
is achieved by creating a correlation matrix that identifies the parameters that have a high degree of
correlation that need to be eliminated by reducing the features in the dataset.

When features in a dataset are highly correlated (with a correlation coefficient greater than
0.6 in this case), it indicates that these features convey similar information. Keeping both features
doesn't add significant new information but can increase computational complexity and the risk of
overfitting. Identifying and removing one feature from each highly correlated pair reduces
redundancy, diminishes overfitting, and enhances efficiency by decreasing computational workload
by speeding up the model training and prediction process. Overfitting in neural network means that
the model memorizes the training data instead of learning general patterns resulting in poor
performance on new unseen data. The concept of overfitting in neural networks was first postulated
by Minsky, M. & Papert, S. A. in 1969 in their paper titled “Perceptrons: An introduction to
Computational Geometry” (Minsky & Papert, 1969). In essence, by dropping highly correlated
features, we can streamline our dataset to contain the most relevant and distinctive information,
optimizing model performance and interpretability.

A heat map was generated with the help of the correlation coefficients with values ranging
from -1 to +1. A correlation heat map is a graphical representation that displays the correlation
between multiple variables as a color-coded matrix. Positive correlations are represented by brighter
colors indicating that when one variable increases, the other tends to increase as well. Negative
correlations are shown with darker colors, suggesting that when one variable increases, the other
tends to decrease. This visualization is particularly useful for identifying highly correlated or
inversely correlated variables.

Resampling is done to the resultant matrix obtained after applying correlation. Since the
majority of the dataset consisted of PD patients compared to healthy individuals a uniform
distribution method was applied to balance it. A resampling technique was applied for feature
reduction. This could reduce the features to 384 records and 197 attributes. This reduction aimed
to enhance model efficiency and interpretability by focusing on the most informative features while
discarding redundant or less significant ones. The dataset used for the study is an imbalanced one
with two classes — class 1 (with PD) and class 2 (without PD). Out of which class 1 had more
matching records. To overcome this problem of imbalanced datasets, a resampling technique called
stratified cross-fold validation (Ron et al.,1995) is applied. It ensures that each fold has the same
proportion of classes as the original dataset. This leads to more reliable and consistent performance
metrics across folds. By maintaining the class distribution in each fold, the model is exposed to a
similar class balance in training and validation, making it more likely to generalize well to unseen
data. This helps to avoid overfitting to a particular class distribution and ensures that the model's
performance metrics (e.g., accuracy, precision) are more representative of its performance on the
actual distribution of the target variable. This consistency is crucial for reliable model evaluation.

4. Working methodology

4.1. CGAN Architecture

The architecture of CGAN is composed of two neural networks, the generator, and the
discriminator as shown in (see Figure 1). They are always competing with each other in a game-like
pattern. The goal of the generator is to create synthetic data which mimics real data whereas the
discriminator assesses the veracity of the data which were fed into it.

Essentially, generative models create their training data. When training begins, the generator
produces fake data by taking noise as input from latent space along with the class or category as a
conditional vector. Artificial intelligent systems process input data, identify patterns and
relationships, and then organize this information in latent space for easy access. This helps these
systems in making better predictions, generate new data, or classify information efficiently. The
output of the generator is connected directly to the discriminator’s input. The discriminator also
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receives instances from the original dataset and the conditional vector during its training period. As
training progresses, the generator gets closer in producing output that can deceive the discriminator.
The discriminator learns not to be fooled by the generator’s synthetic data from real data. The
generator and discriminator loss has to be reduced to build an efficient CGAN model. The
discriminator after classification sends a signal to the generator through backpropagation to update
its weights. As the feedback loop between the adversarial networks continues, the generator will
begin producing high-quality and more realistic output and the discriminator will become better in
classifying the real and fake ones.
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Figure 1. Architecture of CGAN Model

4.2. Implementation of CGAN

The CGAN model architecture consists of two sub-models: a generator and a discriminator.
The generator model is used to create synthetic data from the problem domain whereas the
discriminator model is used to classify real data from fake (generated) ones. The CGAN training
algorithm trains both generator and discriminator models separately.

The dataset involved in the study is obtained from the UCI machine
learning repository (Sakar, et al., 2018) which has voice attributes of patients suffering from
Parkinson’s disease and healthy cohorts. The initial speech samples were divided into training and
test sets. To build a CGAN model we created separate generative and discriminative models and
combined it to form the basic CGAN architecture. The trained CGAN generator produces synthetic
samples using noise from latent space and conditional vectors that represent the class or category.
The real samples from the training set, conditional vectors along with the synthetic samples from
the generator were fed to the discriminator. It has to properly filter out these samples. Both models
were combined to build the CGAN that produces the synthetic data that closely resembles the
original data, thus helping in achieving data augmentation. The output of CGAN is used for
classifying PD with the help of a classifier. In this model, we have used RNN-LSTM as the
classifier.

4.2.1. Generator network

The generator network can be defined as a function G: (Z/Y) — X, which has as input data
(random noise) z e Z and the conditional vector Y that produces an output X e X. The generator
network G is an artificial neural network, which takes random noise as input (input dimension or
lI-dimension) along with the conditional vector to generate synthetic data samples as output. Leaky
ReLU was used as an activation function and batch normalization was applied at each layer except
the last one which uses tanh for activation.
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Algorithm: The Generator network

1. Input: - Random noise (Z), conditional vector(Y)
Output : Synthetic data similar to actual dataset X
define_generator(l_dim)

for i in the range do

model.add(dense(nodes,] dim=100)
model.add(LeakyReLU)
model.add(BatchNormalization)
model.add(dense(1024))
model.add(LeakyReLU)
model.add(dense(nodes, tanh))

0. return generator model

i e A i

4.2.2. Discriminator Network

The discriminative network implements a function:

D: (x1,x,y) — [0,1]. This network takes input as the generated data x1 e X (from the
generator), x e X. (real data set), y e Y (conditional vector) and gives output as a binary value [0,1]
deciding whether the data is real or generated. The D(x,y) shows the real data as output and
D(G(z,y),y)) shows the fake data as output. Leaky ReLU was used as an activation function in all
layers except the output layer which uses sigmoid as an activation function. The loss function used
in the model is binary cross-entropy which was used as output of the model and has a probability of
0 or 1. Binary cross entropy is a loss function used in machine learning, particularly for binary
classification problems. It measures the difference between predicted probabilities and actual labels.
The concept of cross-entropy originated in information theory introduced by Claude Shannon in his
1948 paper titled “A Mathematical Theory of Communication” (Shannon, et al., 1948). This
method was popularized in the 90’s for neural networks, particularly in the context of logistic
regression. Some notable researchers who contributed to its development and applications in
machine learning include David Rumelhart, Geoffrey Hinton, and Ronald Williams in the year
1986 (Rumelhart, et al., 1986).

Algorithm: The Discriminator network
1. Input: Synthetic data created by the generator
network(X),real data (x) and conditional
vector (y)
Output: Class label 1 for original data and 0 for
generated data

model.add(dense(1, sigmoid))
return discriminator model

2. define discriminator(X)

3. for i in the range do

4. model.add(dense(1024,X))
5. model.add(LeakyReL.U)

6. model.add(dense(512))

7. model.add(LeakyReLU)

8.

9.

4.2.3. Building CGAN

In this, a CGAN is created by stacking the generator and discriminator networks. First, we
set the trainable parameter of the discriminator network to false. This helps in freezing the weights
in the discriminator network while the generator network is trained. This prevents the discriminator
from being updated while the generator creates new samples using noise and the conditional vector.
The input dimension or shape passed to the CGAN network is the shape of noise, which is passed to
the generator. The generator’s output is fed to the discriminator, which classifies the data as original
or fake. Finally, the CGAN produces synthetic samples which mimic the original data.
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Algorithm: Building CGAN model

1. Input : generator, discriminator

Output : generated data mimicking original data
2. define build cgan(generator, discriminator)
3. set discriminator.trainable =false

cgan_inp =Input(input_dim=100)

x= generator(cgan_inp)

cgan_out = discriminator(X)

gan model= call build_cgan(input=cgan_inp, outputs=cgan_out)
return cgan model

Nownk

4.2.4. Classifier for Prediction

The output of CGAN consisting of generated data that mimics the real data is combined
with the original dataset to create a new hybrid dataset which is then fed to the RNN -LSTM
classifier to distinguish PD patients from healthy cohorts.

Algorithm: Deep Learning Classifier using RNN (LSTM)

1. Input: Combined dataset created using synthetic data
generated by the CGAN model and real dataset is
passed as input_shape

Output: Class label 1 for PD patients and 0 for healthy cohorts

. model = sequential () // deep learning classifier initialization

. model.add(LSTM(64, input_shape))

. model.add(SpatialDropoutID(0.2))

model.add(LSTM(32,dropout=0.2,recurrent-dropout=0.2))

model.add(dense(1, sigmoid))

. final model = model.fit(input_shape)

. predicted_result = final _model. predict(test_sample)

. return predicted_result

N RN e NV NN

4.2.5. Training CGAN model

The discriminator is designed to correctly classify the actual and synthetic data. This is
made possible by maximizing the log of the inverted probability of fake data and the log of the
predicted probability of real data. These are averaged over each mini-batch of sample data. The loss
function of the discriminator searches for probabilities that are close to 1.0 for actual data and
probabilities close to 0.0 for synthetic data which then invert and become larger numbers. The
addition of these values indicates that a lower average value of this loss function can lead to better
performance of the discriminator. The generator is trained with the intention of stimulating the
discriminator to predict the generated data to be real with high probability. This is done by adjusting
the generator’s weights through the discriminator by setting class labels of 1 for the generated data.
No changes are made to the discriminator throughout this process. The gradient information
required to adjust the generator’s weights is passed as input. For example, if the discriminator
predicts a low average probability for the batch of synthetic data, this results in large error signal
due to high generator loss being propagated backward into the generator as the expected probability
value is 1.0 for the real samples. These large error signals indicate the generator to improve its
prediction rates by adjusting the weights and enhancing its ability to generate fake samples that
closely resemble real ones in the subsequent batches. The training of the generator and
discriminator continues until it reaches a point of saturation, where no further improvement in the
performance of either neural network is expected. At this point, the loss of generator and
discriminator would have been reduced to a bottom level which is not subject to changes. This
marks the end of CGAN’s training. The results obtained conform to the real data. This generated
data is combined with the original data and can be fed to any classifier to predict the outcome. In
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this study RNN -LSTM is implemented for the classification of PD patients from healthy cohorts.

4.2.6. CGAN Loss Function
In the paper by lan Goodfellow (Goodfellow et al., 2014) the standard GAN loss function
was described initially which can be represented as follows

E, |log(D(2))| + E[log(1 — D(G(2)))] (1)

The above equation represents the standard loss function of GAN. For our model CGAN the
objective function can be denoted as shown below

minmax V(D, &) = Eg vy (@) [log D(x|y)] + E,p. () [log(1 = D(G(2ly)))]

2)

Here E is used to indicate the expected value of a random variable.

E

T~pua - denotes the expected value with respect to actual data
distribution "Pdat ()

K

z~p=(2) - denotes the expected value with reference to the prior
noise distribution p,(z)

The aim is to simultaneously minimize the generator’s ability to deceive the discriminator
and maximize the discriminator’s ability to accurately classify real and synthetic samples.

The term [log D(x|y)] encourages the discriminator to precisely classify real samples
whereas the term [log(1-D(G(z|y))] encourages the generator to create samples that are accurately
classified as real by the iscriminator. This creates a balance in which the generator can refine its
ability to generate realistic samples, and the discriminator becomes more adept at classifying
between real and generated samples. It can be further classified into two parts — the discriminator
loss and the generator loss.

4.2.7. Discriminator Loss Function

The discriminator is trained to distinguish both the actual data from the dataset and the
synthetic data from the generator. The discriminator's loss is a measure of how well it can be
differentiated between the two. The most popular loss function for the discriminator in a CGAN is
the binary cross-entropy loss. It compares the discriminator's predictions with the true labels (0 for
real samples and 1 for generated samples) and calculates the loss accordingly. The formula for
binary cross-entropy loss is as follows:

loss = -sum(y_true * log(y _pred) + (1 —y _true) * log(1 -y pred)) (3)

Here, y true represents the true labels and y pred represents the discriminator's predictions.
The aim is to minimize this loss, which indicates that the discriminator is becoming more
accurate in distinguishing
between real and generated samples.

4.2.8. Generator Loss Function

The generator aims to create realistic samples that can deceive the discriminator. Its loss is
inversely related to the discriminator's loss. In other
words, the generator tries to minimize the discriminator's ability to distinguish between actual and
generated samples. The generator's loss in a CGAN is calculated using binary cross-entropy.
However, the labels for the generated samples are inverted compared to the discriminator's loss. The

216



S. Chandrabhanu, S. Hemalatha - CGAN Facilitated Data Augmentation of Voice and Speech Parameters for Detecting
Parkinson’s Disease in the Prodromal Phas

formula for the generator's loss is as follows:
loss = -sum((1 - y_true) * log(y_pred)) 4)

Here, y true represents the inverted labels for the generated samples, and y pred
represents the discriminator's predictions for those samples. By minimizing the loss, the generator
learns to generate samples that have more probability to be categorized as real by the discriminator.
Based on the the ability of the discriminator to classify the real and fake data, the probability score
of either 0 (fake) or 1(real) is determined. This probability of prediction by discriminator is used to
calculate the generator loss. If the generator can successfully deceive the discriminator, it will be
rewarded, if not it will be penalized. The generator gets trained by adjusting the parameters to
maximize the log of the discriminator probabilities. Eventually, the generator tries to maximize the
probability of the data being real rather than minimizing the probability of the data being fake. The
generator tries to minimize the GAN loss function meanwhile the discriminator tries to maximize it.

5. Results and Discussions

5.1. Performance Analysis

The adoption of a Generative Adversarial Network (CGAN) for Parkinson's disease
prediction represents an innovative approach, integrating generative and discriminative modelling
within a unified framework. The CGAN architecture harnesses deep learning capabilities to
generate synthetic data, enhancing overall model performance. This work addresses the limited size
of the Parkinson’s disease dataset by using Conditional Generative Adversarial Networks (CGAN)
to generate fake data. The data generated is combined with the original dataset to create a large and
more diverse dataset. Subsequently, a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) units is implemented for the predictive analysis of Parkinson’s disease. The
trained model is evaluated for its accuracy in predicting the disease, potentially contributing to
improved understanding and management of Parkinson’s disease.

Accuracy and precision were used as the performance metrics to measure the model’s ability
to correctly classify PD cases. The dataset obtained on applying CGAN is used for augmenting the
original dataset and the combined dataset was used to train the RNN-LSTM classifier to yield a
good precision score of 0.8792 for training and 0.8994 for testing. The following plot (see Figure 2)
shows the precision of the model obtained during the training and testing phases. The plot (see
Figure 3) shows the accuracy scores of the model on applying CGAN.
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Figure 2. Performance of the model based on precision with CGAN
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Figure 3. Performance of the model based on accuracy with CGAN

The binary cross entropy was applied as the loss function to calculate the loss during the
testing and training phases. The following plot (see Figure 4) depicts the loss during the training
and testing phases. The final loss obtained during training is 0.2974 and testing is 0.2884 which is
considerably small. This is a good indication when we take into account the performance of the
model.

Figure 4. Training and testing loss
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Figure 5. Discriminator and Generator loss

The discriminator and generator loss on applying CGAN is shown in (see Figure 5). The
generator (0.01) and discriminator (0.9) loss indicates that the generator was successful in
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generating data that closely resembles the original dataset. This augmented data was combined with
the original dataset to produce a diverse dataset which was used for training the RNN-LSTM
classifier.

Table 1 summarizes the accuracy score obtained for the RNN-LSTM model with and
without data augmentation. With data augmentation, the model’s performance could be improved
considerably.

Table 1.Performance of the RNN-LSTM with and without data augmentation

Model Training Accuracy Testing Accuracy
RNN-LSTM
(without data augmentation) 80 76
RNN-LSTM
(with data augmentation 87 86
using CGAN)

5.2. Comparison with other deep neural networks

Table 2 summarizes the performance of different deep-learning models implemented with
the Parkinson’s speech dataset. On analyzing the results obtained as shown in Table 2 we conclude
that even though the ANN model showed a high train accuracy compared to other models it showed
overfitting as the difference between training and testing, accuracies were more compared to other
models. GRU models could eliminate the problem of overfitting and could achieve a reasonably
good performance but it suffered from a high training loss. RNN- LSTM classifier showed the best
performance among these three models with fairly good accuracy and precision without much loss.
Implementing data augmentation using CGAN the model could significantly improve the results in
terms of accuracy and precision. The model’s earlier issue of overfitting could be solved using the
standard method for data augmentation through the application of CGAN.

Table 2 . Comparison of performance with other deep learning models

Testing Training Testing
Models cy Accuracy | Precision n Training Loss Loss
ANN 91 83 92 87 0.2623 0.403
RNN- LSTM 80 76 81 81 0.4498 0.5014
GRU 75 75 75 75 0.20651 0.5949
CGAN with RNN- LSTM 86 87.92 89.94 0.2974 0.2884

6. Conclusion

Parkinson’s Disease is a progressive degenerative disease that affects the brain, the
pathogenicity of which is still unresolved. Many unexplained attributes need to be investigated. The
researchers despite their enormous influx of efforts have not been able to clinch the prime attributes
that are responsible for this disease. Parkinson’s Disease shares similar symptoms with many other
neurological diseases. Therefore, it is difficult to identify the disease in its early stages. Various
studies were conducted for diagnosing PD at an early stage using voice and speech attributes. This
has proved worthwhile owing to its non-invasive, inexpensive, and simple methods for acquiring
datasets.

This study is intended to focus on the problem of overfitting which results from training the
deep learning models using a relatively limited dataset. The solution for this was a generalized
method for data augmentation. The conditional generative adversarial networks proved to be a
conducive and efficient method for generating synthetic data that mimics the original data. This
technique could eliminate the problem of overfitting and the results showed significant
improvement in the performance of the model (RNN-LSTM classifier) in the prediction of
Parkinson’s Disease.

219



BRAIN. Broad Research in October 2024
Artificial Intelligence and Neuroscience Volume 15, Issue 3

7. Limitations and Future Perspectives

Even though the study could enhance the performance of the model by eliminating the
problem of overfitting it could not succeed in extricating the attributes that have a high propensity
for Parkinson’s Disease. This study has opened new vistas in the application of data augmentation
in identifying Parkinson’s Disease. This could prove useful in creating a generalized model while
dealing with diverse datasets for Parkinson’s Disease. An architecture that can enhance these
models by selectively focusing on pertinent elements and helps in improving the prediction
accuracy and computational efficiency needs to be implemented. This should act as an impetus for
further advancement in deep-learning algorithms.

The present study is based on a limited dataset which is not composed of real-time values.
Therefore, efforts to identify a large dataset with real-time data were made but it failed to deliver
useful results. Hence, we resorted to augmenting the present dataset. CGAN was chosen for the
study. CGAN is an innovative approach for data augmentation that has a definite advantage over the
problem of overfitting and dimensionality reduction. It could generate more controlled and diverse
outputs compared to traditional GANs. Even though the advantages mentioned above opened up
new avenues for future research, they have not succeeded in identifying features that have
significant contributions to predicting the output. Data complexity, limited interpretability and
scalability, training and evaluation challenges, etc., are the other drawbacks of CGAN. To overcome
these issues a new approach is suggested, which incorporates attention networks into the CGAN
architecture.

These networks, when used with CGAN for tabular data, have the benefits of improved
feature selection and representation, enhanced handling of missing values, increased robustness to
noisy data, and better preservation of data patterns and relationships. It also improves the quality of
synthetically generated data and enhances interpretability through feature importance by assigning
weighted scores to all attributes in the dataset. It also enables compact data representation through
dimensionality reduction.

Hence, the drawbacks of CGAN can be reduced by the fusion of CGAN with attention
networks that can revolutionize future applications using Generative Al.
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