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Abstract 
Mathematically considered, a Triangular Norm is a kind of binary operation frequently used 

in the context of Probabilistic Metric Spaces, but also in other very interesting fields, as may be 
Fuzzy Logic, or in general, in Multi-Valued Logic (MVL). The T-conorm, or S-norm, is a dual 
concept. Both ideas allow us to generalize the intersection and the union in a Lattice, or disjunction 
and conjunction in Logic. Also may be very interesting to introduce a special class of real monotone 
operations. We refer to the so-called Copulas, very useful in many fields. So, we offer now a 
comprehensive analysis of all these aggregation operators. 
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1. Introducing Fuzzy Relations 
The composition of fuzzy relations is defined by the so called "max-min product", 

introduced by two fuzzy relations acting on subsequent three universes of discourse, U1, U2, U3,  
R1 (U1, U2) • R2 (U2, U3) = R3 (U1, U2) 

where  
R3 (U1,U3) = {(x, z) : μ R1 • R2 (x, z) } 

being  
max {∀y∈U₂: min (μ R1 (x, y), μ R2 (y, z))} 

As a particular case of the previous definition for the composition of fuzzy relations, we can 
introduce the composition of a fuzzy set and a fuzzy relation [6, 10].   

The usual properties of the classical relations can be translated to fuzzy relations [2, 3, 5], 
but modified in the following sense 

R is Reflexive, if R (x, x) = 1, for any x. 

Each element would be totally related with itself, when R is reflexive.  

R is Symmetric, if R (x, y) = R (y, x), for any (x, y). 

Therefore, the principal diagonal, Δ, acts as a mirror, in the associated matrix.  
R is Transitive, not in the usual way for relations or associated matrices, but when the following 

holds 

R(x, z) ≥ max (min {R (x, y), R (y, z)}),  for any (x, y) 

All these mathematical methods can be very interesting in Fuzzy Logic and also in many 
branches of Artificial Intelligence.  
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2. Connectives and Fuzzy Sets 
We may define the classical operations among crisp, or classical sets, generalizing to fuzzy 

versions [1, 2, 8, 9]. So, they may be characterized by its membership functions. 
We have, for the union of fuzzy sets, defined by 

Max {μ F (x), μ G (x)} 
And the intersection of fuzzy sets, by 

Min {μ F (x), μ G (x)} 
And also the complement of a fuzzy set, F, by 

μ c(F) (x) = 1 – μ F (x) 
The strict inclusion among two fuzzy sets may be introduced by 

μ F (x) < μ G (x) 
And in its more general (non strict) version, 

μ F (x) ≤ μG (x) 
The difference among two fuzzy sets, F and G, by 

μ F – G (x) = min {μ F (x), μ c(G) (x)} 
Turning to the first mentioned definitions, both proofs can be expressed easily, by counter-

examples, in an algebraic or geometric way.  
 

3. Introduction to T-norms  
A Triangular Norm, abridgedly expressed by t-norm or T-norm, will be a binary operation 

which appears in the framework of probabilistic metric spaces, but also in MVL (Multi-Valued 
Logic), and more specifically in Fuzzy Logic [1, 4, 7]. 

A T-norm is a function, T, given by 
T: [0, 1]2 → [0, 1] 

Satisfying the properties: 
1) Monotonicity: if a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d) 
2) Commutativity: T (a, b) = T (b, a) 
3) Associativity: T (a, T (b, c)) = T (T(a, b), c) 
4) The number 1 acts as an identity element, i.e. 

T (a, 1) = a 
This requirement is related with that such number, 1, must correspond to the interpretation 

as true, being dually 0 as false. 
The inner meaning of “continuity” expresses that very small changes in truth values should 

not macroscopically affect such values for their conjunction. 
Frequently, T-norms are used to construct the intersection of fuzzy sets. But also are used as 

a basis for aggregation operators. 
Other use of T-norms will be in Probabilistic Metric Spaces, generalizing triangle inequality 

of ordinary metric spaces. For this reason, it is called T-norm. 
Finally, we can conclude that a T-norm generalizes the conjunction in Logic, and also the 

intersection in a lattice. 
 

4. Classification and Examples of T-norms 
It is called Continuous, if it is so as a function, when we consider the usual interval topology 

on [0, 1] x [0, 1]. 
In a similar way, we may define left-continuous and right-continuous. 
It is called Archimedean, if it has the Archimedean property, i.e. if for each values x and y, 

that belongs to the open unit interval, (0, 1), there is a natural number, n, such that 
x * x * …n) 

* x ≥ y 
Some illustrative examples of T-norms will be: 
- Minimun T-norm, also called the Gödel T-norm. It is the pointwise largest T-norm. 
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- Product T-norm. It is the ordinary product of real numbers, being a strict Archimedean T-
norm. 

- Lukasiewicz T-norm. It will be a nilpotent Archimedean T-norm, being pointwise smaller 
than the aforementioned product T-norm. 

- Drastic T-norm. It is the pointwise smallest T-norm, being a right-continuous Archimedean 
T-norm. 

- Nilpotent minimum. It constitutes an example of left-continuous, but not continuous, T-
norm. Note that despite its name, it is not a nilpotent T-norm. 

- Hamacher product. It will be a strict Archimedean T-norm. 
Recall that: 

A continuous T-norm is Archimedean if and only if 0 and 1 are its only idempotent 
elements.  

And it is Nilpotent if and only if each x < 1 is a nilpotent element of T.  
For each continuous T-norm, the set of their idempotent elements will be a closed subset of 

[0, 1]. 
 

5. Introduction to T-conorms 
They are a dual concept of T-norm, and also may be called S-norm; abridgedly, S.  
Because under the order-reversing operation 

x → 1 – x 
on the closed unit interval, [0, 1], we have the transformation 

T (x, y) = 1 - S (1 - x, 1 - y) 
Therefore, every T-norm can be generated from a S-norm, and vice versa. 
Indeed, it is a generalization of De Morgan´s Laws. 
It verifies the following conditions: 
1) Monotonicity: if a ≤ c and b ≤ d, then S (a, b) ≤ S (c, d). 
2) Commutativity: S (a, b) = S (b, a). 
3) Associativity: S (a, S (b, c)) = S (S (a, b), c). 
4) Existence of identity element: S (a, 0) = a. 
S-norms are used to represent union, in fuzzy set theory. 
And also to represent logical disjunction, in fuzzy logic. 

 
6. Examples of S-norms, or T-conorms 
They are duals to fundamental T-norms. So, for instance [4, 7], 

- Maximum S-norm, dual to the minimum T-norm. It will be the smallest S-norm. 
- Probabilistic Sum. It is the dual to the product T-norm. Working on Probability Theory, it 

expresses the probability of the union of independent events. 
- Bounded Sum. It is the dual of Lukasiewicz T-norm. Correspondingly, it will be the standard 

semantics for strong disjunction in Lukasiewicz fuzzy logic. 
- Drastic S-norm. It is the dual of drastic T-norm. And it will be the largest S-norm. 
- Nilpotent maximum. It is the dual of nilpotent minimum.  
- Einstein Sum. It is the dual of Hamacher T-norm. 

 
7. Introduction to Copulas 
We consider two-dimensional copulas [4, 7]. It will be denoted by C. 
We describe this mathematical object as a function 

C: [0, 1] 2 → [0, 1] 
with these properties: 

1) C (0, x) = C (x, 0) = 0 
2) C (1, x) = C (x, 1) = x, for any x∈[0, 1] 
3) C is 2-increasing, i.e. for all x, y, x´, y´∈[0, 1], with x ≤ x´, and y ≤ y´, for the volume 

(denoted by VC) of the respective rectangle  
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[x, x´] x [y, y´] 
it holds 

VC ([x, x´] x [y, y´]) = C (x, y ) + C (x´, y´) – C (x, y´) – C (x´, y) ≥ 0 
 

8. Note 
An interesting application of Copulas may be the Sklar´s Theorem, according to which [7]: 
For each random vector, (X, Y), will be characterized by some copula, C, in a way that for 

its joint distribution, FXY, and for the corresponding marginal distributions, Fx and FY, we have 
FXY (x, y) = C (FX (x), FY (y)) 

It would be a mere sample of many other possible applications of all these mathematical 
techniques, also interesting from a mathematical viewpoint. For these reasons, it is currently a 
theoretical field quickly evolving.  
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