
119

An Delphi Application for the Syntactic and Lexical Analysis of a
Phrase Using Cocke, Younger, and Kasami Algorithm

Bogdan Pătruţ

Department of Mathematics and Computer Science,
Faculty of Sciences, “Vasile Alecsandri” University of Bacău

Calea Mărăşeşti, 157, 600115, Bacău, Romania
bogdan@edusoft.ro

Ioana Boghian

Department of Philosophy and Communication Sciences,
Faculty of Letters, “Vasile Alecsandri” University of Bacău

Spiru Haret, 8, 600114, Bacău, Romania
rahela_bac@yahoo.com.uk

Abstract
This paper focus on the Cocke, Younger, and Kasami algorithm. We present a Delphi

application that analiyzes the lexicon and the syntax of a sentence in Romanian. We use a Chomsky
normal form (CNF) grammar. We will present the source of a Delphi implementation of the CKY
algorithm.

Keywords: CKY algorithm, lexical analysis, Delphi programming

 1. General presentation

The program, which is highly complex, is part of the category of natural language
processing programs. A phrase is entered into a text box and the program tells whether the phrase is
correct or not, according to some vocabulary and an array of previously established syntactic rules
which make up a certain grammar [1].

Figure 1. Example of parsing the phrase “orice barbat iubeste o femeie frumoasa si desteapta” (“any man
loves a beautiful and intelligent woman”)

For example, in the figure above (Figure 1), the phrase “orice barbat iubeste o femeie

frumoasa si desteapta” (“any man loves a beautiful and intelligent woman”) has been entered and
has been accepted as correct. The table shows the diagram of the syntactic analysis for the phrase,

B. Pătruţ, I. Boghian – A Delphi Application for the Syntactic and Lexical Analysis of a Phrase Using CYK Algorithm

 120

which starts from the row labelled with “0” and ends with the column labelled “desteapta”
(“intelligent”).

The lexicon used in the analysis, written in the 'LEX.TXT' text file, was the following:

Det->orice
Det->fiecare
Det->o
Det->un
Pron->el
N->barbat
N->femeie
V->iubeste
V->uraste
A->frumoasa
A->desteapta
C->si
C->sau

Thus, the previously analysed phrase contains words only from the chosen vocabulary. On

the other hand, the phrase "any dog hates a cat ", although syntactically correct in Romanian, is not
accepted because it contains words that have not been entered into our vocabulary.

The file contains, on each row, a rule of the type (2):

GM → W (2)

where GM is a grammatical category (or part of speech) and W is an word from a certain dictionary.

Syntax rules (from the 'GRAM.TXT' file) constitute a subset of the Romanian syntax rules:

S->NP VP
NP->Pron
NP->N
NP->Det N
NP->NP AP
AP->A
AP->AP CP
CA->C A
VP->V VP
VP->V NP

Thus, by using the established notation (S = sentence, NP = noun phrase, VP = verb phrase,

N = noun, Det = determiner (article), AP = adjectival phrase, A = adjective, C = conjunction, V =
verb, CA = group made up of a conjunction and an adjective.

The syntax rules are given, one on each line, thus (3):

GM1 → GM2 GM3 (3)

meaning that the first grammatical category (GM1) forms out of the concatenation of the other two
(GM2 and GM3), from the right side of the arrow.

According to the syntax rules used in our application, the phrase we have analysed in the
beginning is correct, while the following figure (Figure 2) presents a case viewed as incorrect.

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 1, Issue 2 , April 2010, ”Happy Spring 2010!”, ISSN 2067-3957

 121

Figure 2. A rejected “sentence”

We should mention the fact that the algorithm that we have implemented uses only

grammars written in Chomsky (CNF) normal format. A CNF grammar is a context-free grammar
where productions take the form of: A → B C, where A is a non-terminal, and B and C are non-
terminals or pre-terminals [1], [5]. We have also considered rules of the type A → B as acceptable.
Therefore, in the right side of the production rules there will be two or only one element.

Details concerning the topic under discussion, for the unknowing reader, can be studied in
the works mentioned as references.

 2. The Cocke, Younger, and Kasami Algorithm

We will further present the basic analysis algorithm (also called "chart-parsing") elaborated
by Cocke, Younger, and Kasami and named the basic CYK algorithm [2], [5]

The algorithm uses a matrix (a diagram) chart, like those in the previous figures.
First of all, we need certain definitions:
The following operation is defined (4):

Star(X,Y)={C|(A∈X) ∧ (B∈Y) ∧ (C→AB ∈ Rules)} (4)

 where Rules denotes the production rules of the grammar.

This represents the fact that the product of two cells from the matrix is created by combining
all the pairs of items in the two cells which satisfy certain grammar rules.

Another operation that is defined is (5):

Closure(S) = {A|(A∈S) ∨ ((B∈Closure(S)) ∧ (A→B∈ Rules } (5).

This represents the fact that closing an S cell is formed of the content of S plus the result of

adding any other category deriving from an existing member of S’s closure. For example, if N is in
S then N belongs to Closure(S); then, if there is a rule NP->N, and NP will be added to Closure(S);
things continue thus as long as new members can still be added to Closure(S).

Finally, there is also a Lookup function, of the type (6):

Lookup(k) = {A|A->wordk} (6),

B. Pătruţ, I. Boghian – A Delphi Application for the Syntactic and Lexical Analysis of a Phrase Using CYK Algorithm

 122

meaning that it gives us the list of grammatical categories that the word number k from our phrase
provides (sometimes a word can have more than one grammatical category, for example “going”
can be both a noun or a verb).

Taking into consideration the above definitions, the basic CKY algorithm is [4]:

for k:=1 to n do
begin

chart[k-1,k]:=Closure(Lookup(k));
for i:=k-2 downto 0 do
begin

chart[i,k]:=∅;
for j:=k-1 downto i+1 do
chart[i,k]:=chart[i,k] ∪ Star(chart[i,j],chart[j,k]);
chart[i,k]:=Closure(chart[i,k]);
end

end;
if S ∈ chart[0,n] then Accept else Reject

The algorithm presented above will be implemented into the following program where, due

to some restrictions of the Pascal language, procedures for the three defined functions will be
realized.

3. Implementing the algorithm

unit parser1;
interface
uses

Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, Grids, ExtCtrls;

type
TForm1 = class(TForm)

StringGrid1: TStringGrid;
Edit1: TEdit;
Label1: TLabel;
procedure Edit1KeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }

end;
var

Form1: TForm1;

implementation
{$R *.DFM}
const max=20; maxreg=20; maxcuv=5; maxcuvinte=20;

In order to memorize the elements displayed to the left and to the right of a grammar rule,

we use the type Word.

type Cuvint=String[30];
MultimeDeCuvinte=object

nc: Integer;
cuv: array[1..maxcuv] of Cuvint;
procedure Adauga(c: Cuvint);

end;

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 1, Issue 2 , April 2010, ”Happy Spring 2010!”, ISSN 2067-3957

 123

A rule is made up of two parts, one to the left and one to the right, and a grammar is made
up of several of such rules.

regula=record

st,dr: Cuvint
end;

type Gramatica=object
nr: Integer;
reg: array[1..maxreg] of regula;
procedure Citeste(nf: String);

end;

The diagram is a matrix where each cell is a set of words. G is the grammar with the rules

and D is actually the word dictionary used.

var chart:array[0..max, 0..max] of MultimeDeCuvinte;
G: Gramatica;
D: Gramatica;
Propoz: array[1..maxcuvinte] of Cuvint;

 Drawing the diagram is done according to the content of the chart matrix by using the
StringGrid1 control [3]:

procedure DeseneazaChart(i,j: Integer);
var t: String; k,kk: Integer;
begin

if chart[i,j].nc>=1 then
begin
t:='{';
for k:=1 to chart[i,j].nc-1 do

t:=t+chart[i,j].cuv[k]+',';
t:=t+chart[i,j].cuv[chart[i,j].nc]+'}';
Form1.StringGrid1.Cells[j,i+1]:=t;
Form1.StringGrid1.Refresh

end
end;

The following function checks whether a given word x is or is not inside a set of words M.

function EsteIn(x: Cuvint; M: MultimeDeCuvinte): Boolean;
var este: Boolean; i: Integer;
begin

este:=False;
for i:=1 to M.nc do

if x=M.cuv[i] then este:=True;
EsteIn:=este

end;

For objects of the type MultimeDeCuvinte (SetOfWords) we have provided a

procedure for adding a new word:

procedure MultimeDeCuvinte.Adauga(c: Cuvint);
begin

nc:=nc+1; cuv[nc]:=c
end;

B. Pătruţ, I. Boghian – A Delphi Application for the Syntactic and Lexical Analysis of a Phrase Using CYK Algorithm

 124

Based on the last two subprograms described, we can define Star, Closure and

Lookup operations, as well as the operation of reading a grammar whose rules are written in a
given text file.

procedure Star(X,Y: MultimeDeCuvinte;
var Z: MultimeDeCuvinte);
var i,j,k: Integer;
begin

Z.nc:=0;
for i:=1 to X.nc do

for j:=1 to Y.nc do
for k:=1 to G.nr do

if G.reg[k].dr=X.cuv[i]+' '+Y.cuv[j] then
Z.Adauga(G.reg[k].st)

end;

procedure Closure(S: MultimeDeCuvinte;
var C: MultimeDeCuvinte);
var i: Integer; gata: Boolean;
begin

C:=S;
repeat

gata:=True;
for i:=1 to G.nr do

if EsteIn(G.reg[i].dr,C) then
if not EsteIn(G.reg[i].st,C) then
begin

C.Adauga(G.reg[i].st);
gata:=False

end
until gata

end;

procedure Gramatica.Citeste(nf: String);
var f: TextFile; s: String; p: Byte;
begin

nr:=0;
AssignFile(f,nf);
Reset(f);
while not eof(f) do
begin

nr:=nr+1;
ReadLn(f,s);
p:=Pos('->',s);
reg[nr].st:=Copy(s,1,p-1);
reg[nr].dr:=Copy(s,p+2,Length(s)-(p+1))

end;
CloseFile(f)

end;

procedure Lookup(k: Integer; var L: MultimeDeCuvinte);
var i: Integer;
begin

L.nc:=0;
for i:=1 to D.nr do

if D.reg[i].dr=Propoz[k] then
begin

L.nc:=L.nc+1;
L.cuv[L.nc]:=D.reg[i].st

end
end;

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 1, Issue 2 , April 2010, ”Happy Spring 2010!”, ISSN 2067-3957

 125

Finally, the following procedure performs the grammatical analysis of the given phrase

(ss), on the basis of the algorithm that has been theoretically described in the first paragraph.

procedure Parseaza(ss: String);
var i,j,k,kk: Integer;

n: Integer; p: Byte;
L,C,S: MultimeDeCuvinte; t: String;

begin
ss:=ss+' ';
n:=0;
while ss<>'' do
begin

p:=Pos(' ',ss);
n:=n+1;
Propoz[n]:=Copy(ss,1,p-1);
Form1.StringGrid1.Cells[n,0]:=Propoz[n];
Str(n-1,t);
Form1.StringGrid1.Cells[0,n]:=t;
Delete(ss,1,p)

end;
Form1.StringGrid1.RowCount:=1+n;
Form1.StringGrid1.ColCount:=1+n;
Form1.StringGrid1.Show;
for k:=1 to n do

begin
Lookup(k,L);
Closure(L,C);
chart[k-1,k]:=C;
for i:=k-2 downto 0 do

begin
chart[i,k].nc:=0;
for j:=k-1 downto i+1 do

begin
Star(chart[i,j],chart[j,k],S);
for kk:=1 to S.nc do

if not EsteIn(S.cuv[kk],chart[i,k]) then
chart[i,k].Adauga(S.cuv[kk])

end;
Closure(chart[i,k],C); chart[i,k]:=C
end

end;
for i:=0 to n do

for j:=0 to n do DeseneazaChart(i,j);
if EsteIn('S',chart[0,n]) then

Form1.Label1.Caption:= 'Fraza acceptata.'
else

Form1.Label1.Caption:= 'Fraza rejectata.'
end;

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin

if Key=Chr(13) then Parseaza(Edit1.Text)
end;

procedure TForm1.FormCreate(Sender: TObject);
begin

Caption:='Basic CKY Parser'; StringGrid1.Hide;
G.Citeste('gram.txt'); D.Citeste('lex.txt');

end;

end.

B. Pătruţ, I. Boghian – A Delphi Application for the Syntactic and Lexical Analysis of a Phrase Using CYK Algorithm

 126

Bellow are the contents of the two files (grammnar and dictionary) that we have used in the

examples we have analysed:

We should mention the fact that the algorithm works only if there are at least two symbols in

the right side of each grammar rule, therefore we should pay due attention to rewriting the
grammars that we use, so that they may meet with this restriction.

 Conclusion
 We described in this paper the CKY algorithm that can be applied for lexical and syntactical
analysis of Romanian sentences, if we write the grammar as a CNF grammar. Also, we
implemented the algorithm in Delphi 3.0, developed by Borland (www.borland.com).

 References:
[1] Chomsky, N. (1965). Aspects of the Theory of Syntax. Boston, MA: MIT Press, ISBN 0-262-
53007-4.
[2] Hopcroft, J. E., Motwani, R., Ullman, J. D. (2006). Introduction to Automata Theory,
Languages, and Computation, 3rd Edition, Addison-Wesley, ISBN 0-321-45536-3, p 272.
[3] Kreylos, O., ECS 12- Lesson 11 – Chomsky Normal Form, Retrieved from
http://www.enseignement.polytechnique.fr/informatique/profs/Luc.Maranget/IF/09/chomsky.pdf
[4] Patrut, B. (2006). 20 Applications in Delphi and Visual Basic. Bacău, Romania: EduSoft, (in
Romanian).
[5] Sipser, M. (1997), Introduction to the Theory of Computation (1st ed.). IPS, p. 99, ISBN 0-534-
94728-X.

GRAM.TXT
S->NP VP
NP->Pron
NP->N
NP->Det N
NP->NP AP
AP->A
AP->AP CP
CP->C A
VP->V VP
VP->V NP

LEX.TXT
Det->orice
Det->fiecare
Det->o
Det->un
Pron->el
N->barbat
N->femeie
V->iubeste
V->uraste
A->frumoasa
A->desteapta
C->si
C->sau

