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Abstract:  
To understand and analysis behavior of complicated and intelligent organisms, scientists 

apply bio-inspired concepts including evolution and learning to mathematical models and analyses. 
Researchers utilize these perceptions in different applications, searching for improved methods and 
approaches for modern computational systems. This paper presents a genetic algorithm based 
evolution framework in which Spiking Neural Network (SNN) of artificial creatures are evolved for 
higher chance of survival in a virtual environment. The artificial creatures are composed of 
randomly connected Izhikevich spiking reservoir neural networks using population activity rate 
coding. Inspired by biological neurons, the neuronal connections are considered with different 
axonal conduction delays. Simulations results prove that the evolutionary algorithm has the 
capability to find or synthesis artificial creatures which can survive in the environment successfully. 

 
Keywords: Spiking Neural Networks (SNN), Izhikevich Model, Genetic Algorithm (GA), 
artificial creature. 

 
1. Introduction 
Artificial neural networks are inspired by natural neural systems such as brain. Human 

brain, for instance, consists of about 1011 neurons with over 6 × 1013 interconnections. Brain has an 
unapproachable potential in a wide variety of parallel information processing such as pattern 
recognition, speech processing, sensory system, locomotion, learning, etc., which are impossible by 
conventional computational devices. Therefore, scientists have been trying to understand different 
aspects about brain functionality. Following this path, different features of neurons, as the building 
blocks of the neural systems, have been investigated in terms of mathematical/circuit models, 
dynamic behavior and time-spatial and topological network properties and so on. As a result, a new 
generation of neural network is introduced: Spiking Neural Network (SNN). SNNs are the third 
generation of artificial neural network in which spikes train are the basis of the information 
exchange between individual neurons. In comparison, the first generation of artificial neural 
networks consists of McCulloch-Pitts neurons which can only present digital outputs, whereas in 
the second generation neurons communicate with continuous activation function [1-4]. 

In recent decades, the spiking neural network is progressively receiving attention because 
this approach to the neural networks expands the level of realism in simulation and dynamic 
analysis is considered as a powerful tool for examination of brain process such as information 
coding, plasticity and learning. In this regard, several mathematical models have been presented to 
describe the behavior of the spiking neurons [5]. Some models attempt to simulate the neuron very 
precisely. This group of models is usually computationally expensive and is not suitable for large 
scale neural network realization. There are models, on the other hand, which do not characterize the 
neuron very precisely but can be used to create large scale neural networks. 

One important method in order to comprehend how the brain turns sensory input into actions 
is behavioral study of the artificial creatures. From this point of view, SNNs have the potential to be 
used in neural network controller of the artificial creatures. Although, compared to mammalians 
brain, far less number of neurons can be realized in the nervous system of artificial creatures, study 
of their behaviors is vitally beneficial for understanding complex nervous systems. 

BRAINStorming & 
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Different learning methods have been developed for both types of artificial and biological 
neural networks [6]. These learning mechanisms are usually based on adjustment of the synaptic 
strengths (or weights). Although this classic learning approach can be adequate in the first and 
second generation of neural networks, nature of SNN presents higher degree of complexity which 
needs more complicated learning approaches such as Spike Timing-Dependent Plasticity (STDP) 
[7]. There are a wide range of characteristics in a SNN which are essential in behavioral changes 
which must be taken into account in a learning algorithm such as network topology, neurons’ type, 
synaptic weight and synaptic delays [8]. 

There are a many variations of Evolutionary Algorithms (EA) [9] to search within a huge 
number of possibilities for solutions. Evolutionary search can be applied to find the most successful 
network for specific applications and improve the learning capabilities of neural networks. Three 
basic types of these techniques are: Genetic Algorithms (GA), Evolutionary Programming (EP) and 
Evolutionary Strategies (ES). Among these evolutionary algorithms, GA [10] is the most popular 
and widely used computational model of evolutionary processes for solving practical problems and 
has been used as a systematic model of evolution in artificial-life systems. This algorithm emulates 
some of the processes observed in nature such as selection, mutation and population dynamics. 

One of the active fields of research, in which evolutionary algorithms are utilized, is 
evolutionary robotic [11]. Evolutionary robotics was developed in 1990s as a field of research to 
build robot controllers without detailed hand design. The basic assumption of evolutionary robotics 
is to evolve a population of robots as autonomous artificial organism by evolutionary algorithms to 
improve them by generations. One main research application in evolutionary robotics is the 
evolution of neuro-controllers which use the neural networks for control of robots. In 1992 Dave 
Cliff, Philip Husbands and Inman Harvey [12] indicated that neural network control architecture 
can be evolved to make visually guided robots. Also, spiking neuro-controllers have been evolved 
by some researchers successfully, such as evolution of spiking neural controllers for autonomous 
vision-based robots by Dario Floreano and Claudio Mattiussi [13]. They used Spike Response 
Model neuron and showed that the evolution can find relatively quickly functional spiking 
controllers capable of navigating in irregularly textured environments without hitting obstacles. 
Evolving SNNs by adaptive Genetic Algorithm (GA) have also been used to control a Khepera 
robot [14]. The robot which is controlled by neural networks can perform interesting behaviors. The 
applications of neural robotics are increasing and have attracted significant attentions in research of 
artificial intelligence. 

The main objective of this study is to discover optimal structures for an artificial creature 
with survival capability in virtual environment. Each creature starts with a limited level of energy 
and has the opportunity to find food objects to gain required energy for their survival. GA has been 
utilized to find the better creature structures, because the nature of biological neural networks are 
far more complex compared with traditional artificial neural networks; therefore, it is impossible to 
formulate and find the optimal structure using precise analytical approaches. In this paper a set of 
simulation-based artificial creatures using spiking neural network and Genetic algorithm are 
presented. 

The paper is organized as follows: at first, background is described in Section 2. In Section 
3, neural network structure of artificial creatures is explained; this section consists of two parts: part 
A, neuronal network model and part B, synaptic delay model. Section 4 presents the artificial 
creatures and environment. In Section 5 the evolutionary model which has been used is described. 
In Section 6 simulations are shown and results and conclusions are subsequently explained in 
Section 7. 
 

2.  Background 
Despite recent advancements, scientists are still attempting to figure out wide range of 

unsolved problems about the most powerful organism of human body: the brain. One of the 
challenges in recent years has been recognizing the behavior of this complicated organism, in order 
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to achieve more efficiency in neuromorphic computational and control systems. In this path, 
scientists discover electrochemical process of biological neurons, connectivity topologies, learning 
rules and etc. These concepts are used by computational neuroscientists to construct artificial 
models, such as artificial life and robots. A set of studies about artificial life and robotic have been 
developed recently. For instance; in [15] a C.elegans artificial creature has been presented. In this 
case since the C.elegans has a preliminary known specific neural structure there is no need for 
further investigation of the neural structure, whereas the approach which is presented in our work is 
to discover the most compatible structure among a large space of possible solutions. This is a step 
towards achieving a better understanding of real behavior in nature. For this reason, a reservoir 
neural network is used. In continue reservoir neural network and neuron model are discussed. 

 
RESERVOIR NEURAL NETWORK 
SNN is capable of producing a variety dynamic and behavior. They can be organized for 

many applications such as multilayer feed forward or recurrent networks, like traditional neural 
networks; however, SNN’s operation is different from traditional networks. According to biological 
observations, a biological network topology can be composed of randomly connected neurons in 
which only active neurons process the information. Therefore, it does not seem necessary that a 
biological neural network has a regular structure as in traditional ANNs. Normally, in a natural 
system, neurons are distributed in a randomly connected form within a large scale consistent 
structure. With this explanation, a new form of artificial neural network was introduced: Reservoir 
Computing (RC). The main goal of the reservoir network is to enrich inner dynamics of the network 
in response to the input signals, as to attain the required flexibility, dynamic and adaptivity [16]. 
Initially, concept of reservoir computing structure, was extended by Maass [16], Jaeger [17].This 
type of network is suitable especially for temporal input and output pattern processing, where high 
efficiency can typically be achieved without too much concern about specific settings of the 
reservoir parameters. Principal specifications of reservoir computing model are [18-19]: 
- Layer of K input neurons are connected to the reservoir. 
- A main part consist of M randomly connected neurons. 
- A layer of readout neurons with trained connections from reservoir network. 

The main motivation of reservoir computing is a large solution space creation to discover 
the best and most compatible networks for special purposes. To enhance the strength of this 
network one choice is to applying Spike Time Dependent Plasticity (STDP) to neuron connections 
rules inside the reservoir design. 
 

NEURON MODEL 
As mentioned before, a variety of models have been developed for biological neurons with 

different degrees of precision and complexity. The choice of the model strongly depends on the 
application. This selection is a trade of between precision and computational cost, which is closely 
related to the complexity of these models.  From a precision viewpoint, the Hodgkin Huxley (HH) 
[20] model is a ground breaking model with the highest accuracy in terms of biochemical modeling 
of the neurons but it has a high computational cost. Clearly, large scale simulation of neural 
network with this model is impractically expensive. On the other hand, Integrate and Fire (IF) is 
recognized as one of the simplest models with highest computational efficiency [21]. This model is 
a low cost but in accurate model which is incapable of producing complex dynamic of neurons such 
as bursting. IZ model, introduced by Izhikevich at al. 2003 [22], presents a compromise between 
accuracy and computability which has made it a widely accepted popular model. It is claimed to be 
as realistic as Hodgkin-Huxley model. This model is a 2 dimensional model that is described by two 
differential equations: 
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with the auxiliary after-spike resting equations: 
 

 Then    

where v is the membrane potential and u is the recovery variable. When a small pulse of current is 
applied, the membrane potential raise, if the current is adequate strong, membrane voltage crosses 
its threshold value (30mV); after which the membrane potential and the recovery variable reset 
according to the auxiliary reset equations. Here a, b, c, and d are dimensionless variables and can be 
described by: 

 a: Time scale of the recovery variable u. The lower a value the lower the recovery 
 b: Sensitivity of the recovery variable u to the sub threshold fluctuations of the membrane 

potential v 
 c: After spike reset value of the membrane potential v caused for the fast high-threshold K+ 

conductance. 
 d: After-spike reset value of the membrane potential v caused for the slow high-threshold 

Na+ and K+ conductance. 
The range of parameters in Izhikevich model can be seen in the Table [23].Since this model is 

computationally feasible and biophysically accurate it is used in this study. Its low computational 
cost makes it more suitable for large scale network simulations. Please note that the neural networks 
used in this paper are composed of Izhikevich neurons with a constant range of a, b, c and d 
parameters. 
 

Table 1. Boundaris of parameters in Izhikevich model 
 
 
 
 

 
3. Neural network structure of artificial creatures 
This section presents details of the spiking neural networks used in the artificial creatures. 
 
NEURONAL NETWORK MODEL 
A reservoir network has been used in this paper. This structure has been shown in Figure 1. 

As is observable this network has two input and output layers. The neuronal network that have been 
used is composed of N = 150 randomly connected Izhikevich spiking neurons and different axonal 
conduction delays between each two neurons. Information is transferred between neurons of the 
networks through the links between every two neurons representing synapses. Each neuron is 
connected to M = 15 random neurons, so that the probability of connection is M / N = 0.15. It is 
noticeable that in this network, not only the connection between two neurons is random, but also the 
neurons type selection is random, too. 

 
 
 
 
 
 
 
 

 a b c d 

Min 0.002 0.1 -65 0.05 

Max 0.1 0.3 -55 8 
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Figure 1. Typical neural networks 
 

SYNAPTIC DELAY MODEL 
Neurons transfer data as a spike trains through synapses. Because of the conduction time 

that is required for spike transformation between two neurons it is expected a synaptic delay. Delay 
has a key role in processes. In reality, in the mammalian nervous system, the axonal conduction 
delays are different depending on the type and spatial positioning of the neurons. In this study the 
value of each synaptic connection is assumed to have a fixed conduction delay between 1 ms and D 
= 20 ms [24]. For instance, in Figure 2, synaptic connection delays between neuron A0 and A1 is 
equal to 2 ms, so spike from A0 arrives to A1 after 2 ms. 

 
 
 
 
 
 
 
 

 
Figure 2. Example of different axonal conduction delay between presynaptic neuron A0 and postsynaptic 

neuron A1 and A2. 
 

Different axonal conduction delays between every two neurons are applied as follows: 
For instance, consider presynaptic neuron A0 and postsynaptic neurons A1 and A2 in Figure 

2. If neuron A0 fires spike S0 in t = 9 and S1 in t = 11 and with a time step equal to 0.5 ms, S0 
arrives to A1 in t = 13 and to A2 in t = 14 where S1 arrives to A1 in t = 15 and to A2 in t = 16. This 
is implemented using counters assigned to each spike which increases with each time step in the 
time window. If counters arrive to axonal delay values, the effect of spikes from presynaptic neuron 
applies to the post synaptic neurons. 

For neural network of each creature two arrays, S and I_S are defined. S is a one 
dimensional array for the number of spikes in each neuron and I_S is a two dimensional array, that 
one dimension is for neuron's numbers and another dimension is for spike's number and I_S shows 
the time counter of the spikes. Considering Figure 3, in t = 12, S[0] is equal to 2 which means A0 
has fired two spikes and I_S[0][0] = 3 means three time steps (1.5 ms) passed from occurring S0 in 
neuron A0 and I_S[0][1] = 1 means one time step (0.5 ms) passed from occurring S1 in neuron A0. 
In each time step, axonal conduction delays between presynaptic neurons and postsynaptic neurons 
are examined whether they are equal to the elements of array I_S, to apply the respective spikes. 
The pseudo code for applying different axonal conduction delay between presynaptic neurons and 
postsynaptic neurons are shown in Figure 4. 

 
 
t = 9     S0      
t = 10             I_S[0][0] = 1 
t = 11    S1     I_S[0][0] = 2 
t = 12             I_S[0][0] = 3                      I_S[0][1] = 1 
t = 13             I_S[0][0] = 4�S0 to A1   I_S[0][1] = 2 
t = 14             I_S[0][0] = 5�S0 to A2   I_S[0][1] = 3 
t = 15                                                       I_S[0][1] = 4 �S1 to 
A1                

A1

A2
A0

2 ms

2.5 ms
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Figure 3. Example for applying different axonal conduction delay between neurons. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4: Pseudo code for applying different axonal conduction delay between presynaptic neurons and 
postsynaptic neurons. 

 
4. Artificial creatures and environment  
The artificial creatures are designed to find food objects in the environment and each of 

them starts with a limited level of energy. The energy level is decreased by every movement down 
to a certain level. If an artificial creature finds the food source, the energy level increases up to by a 
specific level. Accordingly, each creature can survive in the external environment until the energy 
level is not zero. 

 
 
 
 
 
 

t = 16                                                       I_S[0][1] = 5 �S1 to 
A2 
t = 17                        . 

 
for t = 0 : 400  
    for e = 0 : N                                                                      // for all neuron 
      v = v + 0.5 * ((0.04 * v + 5) * v + 140 – u + I);             // for numerical 
      v = v + 0.5 * ((0.04 * v + 5) * v + 140 – u + I);             // stability time 
      u = u + a * (0.2 * v - u);                                                  // step is 0.5 ms 
   if(v >= 30) S[e]++;                // increase the number of spike for neuron e  
   if (S[e] > 0) 
   { 
          for f = 0 : S[e] do 
              I_S[e][f]++; 
              for c = 0 : m                     //for all persynaptic connection  
                   if(I_S[e][f] == delay_synaptic[e][r]) 
                // delay_synaptic[][] is delay between neuron e and presynaptic 
                    // connections  
              {  
                  // apply effect of spike to respective neuron                
               // ... 
               } 
         end; 
          end; 
   }  
   end; 

 end; 
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Figure 5. The periphery of circular area around of artificial creature in each position 
 

It is assumed in the simulation that the artificial creature in each location stands in the center 
of a circular area with a radius of its vision range, i.e. 2 meters. If the creature turns around itself; it 
only can see objects in its visual range. When a food object appears in the periphery of this circular 
area, a creature should find this food. Moving around, another food appears in a random place on 
periphery of the circular area, and this procedure repeat for 5 iterations. As shown in Figure 5 the 
periphery of the circular area around the artificial creature in each position is divided to 48 slots, 
which can be considered as a rectangular. In the simulation program it is implemented as an array of 
48 × 3. 

The utilized neural networks of the artificial creature consist of three essential parts: 
 

INPUT LAYER AS VISION: 
Visual angle of the artificial creature has been assumed 150 degrees. This is similar to the 

visual angle of the human eye which is approximately 120 - 180 degrees. Since periphery of the 
circular area around the artificial creature is divided into 48 slots, from creature’s viewpoint each 
slot is equaled to 7.5 degrees as: 

 

=                                   (3) 

 
Therefore, considering that the visual angle of the artificial creature has been assumed 150 

degrees, an image in sight of the artificial creature is composed of 20 sub-divisions because: 

= 20                                       (4) 

 
Figure 6 shows an image in sight of the creature, where the food in this image is the dark 

part of the vision. If the food object places in the vision edge of the artificial creature (2 meters), 
two squares in the image in sight of the creature becomes black and by getting the artificial creature 
closer to the food, more squares of image in sight become block and if all parts of the image in sight 
of the creature become black, the artificial creature has been successful in finding the food object. 
In Figure 6 each part of the image divided to 3 subparts because 3 neurons per part of image in the 
input layer of the artificial creature network (vision) have been considered. So vision of the artificial 
creature composed of 60 neurons due to: 

1
2

3

4

48
47

.         .         .
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(a)

(b)

(c)

(d)

 
Number of parts × 3 = 20 × 3 = 60       (5) 

 
For each black part of image in sight of the artificial creature, three signals as the input 

signals is applied to the three respective neurons. 
 

 
 
 
 

Figure 6, One image in sight of artificial creature. 
 

OUTPUT LAYER AS LOCOMOTION PART: 
Three movements for each creature have been defined: 15 degree right rotation, 15 degree 

left rotation and forward movement. In forward motion, the artificial creature 0.5 meter move to 
forward direction, so 4 forward motions is necessary for finding the food object in utmost of the 
creature location (4 meter). Depend on the food position in the vision, respective locomotion part of 
the artificial creature must be activated, for example if position of the food in sight of the artificial 
creature be right, the right part of locomotion must be activated. Figure 7a, Figure 7b, Figure 7c and 
Figure 7d, shows effect of different type of movement on the image in the vision of artificial 
creature if food be on vision boundaries. As mentioned each part of the image equal 7.5 degree. 
Therefore 15 degree left or right rotation locomotion equivalent two parts shift toward left or right. 
For motion to forward direction, size of the image has been reduplicated so that each part has been 
become to the two similar parts. Then half of new image in right side and left side has been deleted 
in order to create new close image in vision. Accordingly, if food be on vision boundaries, the 
number of black parts of the image for the food object in ultimate location is 2, by one movement to 
forward direction the number of these parts become to 4, by one movement to forward direction the 
number of these parts become to 8 and so on. After four movements to forward all part of the image 
is black and the creature is succeed find the food object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Effect of different type of movement on the image in the vision of artificial creature. a) 

Initial state, b) Forward, c) Right d) Left locomotion 
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Considering real nervous systems, in which many neurons react to the similar stimulus, in 
this paper three neurons are responsible for each locomotion part of the creature in response to the 
stimulus. Therefore, the output layer of the artificial creature neural network consisted of 9 neurons. 
To distinguish the direction of the movement, the artificial life form uses the population activity rate 
coding. This coding has been successfully applied in experiments on sensory or motor systems. In 
population activity, average number of firing in a population of the neurons is calculated in a fixed 
time window as: 

 

      (6) 

 
where N  is the population size,  is the number of spikes (summed over all neurons in 
the population) which are fired during the time window. Window time has a fixed length between  
and  and  is an appropriate time interval [5]. So in each time window the total number of 
spikes in each three neurons is compared with other three neurons and artificial creature moves 
toward direction that the respective neurons fired maximum number of spikes. These fixed time 
windows consist of 600 time-steps. Each time step is 0.5 ms. Flowchart in Figure 8 shows details. 
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Figure 8. Flowchart for movements of creature 

 
MAIN BODY STRUCTURE: 
As mentioned the reservoir neural network has been chosen for neural network of the 

artificial creature as main body structure. Figure 9 illustrates a typical artificial life form and 
circular area around of it. Maximum seeing of the artificial life form is periphery of the circular area 
and can't see places that have beyond of periphery of the circular area. The artificial creature by 
each movement is the center of a circular area so if the creature move to forward direct can see new 
places and some places are voided of seeing. 
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Figure 9. A typical artificial life form and circular area around of it 
 

5. Evolutionary model 
Although there is no methodical investigation has been carried out to find which 

evolutionary techniques work better than others, Genetic Algorithm (GA) has been selected in this 
study, because GA has been inspired from biological evolution and it is based on adaptation 
processes observed in nature, such as natural selection and genetic diversity. GA can find the best 
solution among a possible response space, efficiently [25-27]. 

First, an initial random population of creatures is generated where the neural networks of the 
creatures are coded as chromosomes, as shown in Figure 10a and Figure 10b. Each chromosome 
consists of four parts: A1, A2, A3 and A4. Each part consists of N segments for N neurons of a 
typical neural network structure. The first part, A1, denotes a, b, c and d parameters of neurons 
Izhikevich model (discussed in (1) and (2)). Each segment of A2 shows postsynaptic weights and 
connections for corresponding neuron and each segment of A3 indicates postsynaptic delays of the 
connections. Segment A4 shows postsynaptic neurons that are connected to corresponding neuron, 
as shown in Figure 10b. Each artificial creature (chromosome) is placed in an environment for 
searching and catching the randomly distributed foods in the peripheries. Then fitness value is 
calculated for each of them. Fitness function is the energy level. The ideal creatures are those who 
find food objects in 5 iteration that food sources appeared in random locations by minimum 
movements so that have maximum energy and they can survive. They should show some adaption 
abilities under different conditions. 

 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 

Figure 10: a) A typical neuron and postsynaptic connections with weights and delays b) A typical 
chromosome A1: Parameters of the Izhikevich model, A2: Synaptic weights, A3: Conduction delays, A4: 

Post-synaptic neurons number 
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No 

Then next generation are produced by combination of the elites (15%), crossover (55%) and 
mutation (30%) of the initial population. Elites are the best chromosomes which are directly 
transferred to the next generation. Because of long chromosome length, for crossover, five points 
are randomly chosen in each parent as cut points. Figure 11 shows a typical crossover with two cut 
points and Figure 12 illustrates a flowchart for the proposed evolutionary model. Selections are 
based on Roulette Wheel selection, more detailed information can be found in [28]. 
 
 
 
 
 
 
 
 
 
 

Figure 11. Crossover with two cut points [28] 
 
 

 

 

 

 

 

 

 

 

Figure 12. Genetic Algorithm flowchart 
 

6. Simulation results 
Artificial creatures and the virtual environment are designed and implemented in a C++ 

platform in which simulations are performed. In the GA algorithm, at First step a population of 100 
complex artificial creatures that each of them had 150 neurons were tested and evaluated by GA; 
each neuron connected to 15 post-synaptic neurons with different axonal conduction delays between 
every two neurons. In every generation fitness function has been calculated for all population. The 
initial energy level for each creature is considered as 50. 

Figure 13 compares the average fitness at generations in one typical program running. As 
can be seen from this figure, the average of fitness grows as the number of generations increases. 
Also as can be understood from Figure 14 the number of survived chromosome increases with 
generation progressing. For a better visual understanding of the creatures’ movement, Figure 15 (a, 
b, c, d, e, f, g, h) illustrates movements of a typical successful creature for finding one food object. 
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Figure 13. Average fitness at generation progressing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Number of artificial creatures that could survive in the external environment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Movements a typical successful creature to find food.(a) Initial state, (b) Left, (c) Forward, (d) 
Left, (e) Forward, (f) Forward, (g) Left , (h)Forward and catching food 
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We believe that this study can be a step forward in understanding the morphology of 

artificial creatures. Also this paper suggests more complex artificial life examination by adding 
different part to these networks similar to different segments of the brain such as: vision, 
locomotion, hippocampus and communication in a future work. Because of the different axonal 
conduction delay between every two neurons in the neural network of artificial creatures in this 
paper, our next study is to enhance the artificial lives by STDP learning. 

 
7. Conclusions 
This work presented a Genetic Algorithm for evolving artificial life forms colonies. These 

artificial creatures composed of biological neurons which have been connected randomly. GA could 
be able discover the most compatible structures in the solution space. The results of simulations 
show that the Genetic Algorithm is efficient for this purpose. Winner Artificial creatures of GA 
algorithm have been located in the virtual environment in which they search to find the food objects 
in the environment.  
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