

25

Redesigning a Flexible Material Master Data Application

with Language Dependency

Mihaela Muntean

Department of Business Information Systems, West University of Timisoara, Bld. Vasile Parvan,

no. 4, room 144, 300223, Timisoara, Romania
mihaela.muntean@e-uvt.ro

Cornelia Muntean

Department of Business Information Systems, West University of Timisoara, Bld. Vasile Parvan,

no. 4, room 144, 300223, Timisoara, Romania
cornelia.muntean@e-uvt.ro

Abstract

 Based on some inconveniences identified within a material master data application of the

SAP MM module, the current paper proposes an alternative technical solution for designing the

popup layout screen of the material master data application with respect to language dependency.

The application should present the text of all tabs, areas and fields in the desired language based on

the user logon preferences. Also it has been implemented a possibility to sort the data in the desired

order, so the customer isn’t forced, as before, to search for a certain field, when updating certain

materials. The proposed solution suggests the use of five database tables, combined within three

maintenance views, which build a view cluster. The advantage of the redesigned application consists

of easier maintainability of the data (fields, areas and tabs can be easily added, deleted, reordered

and renamed) and all the data within the view cluster can be translated into any language supported

by the system.

Keywords: Material Master Data Application, language dependency, maintenance view,

view cluster

1. Introduction

In the SAP MM module, material master data refers to all the material master records that

are stored in the system. The material master record is used by different departments of an

organization, and each department requires different information about the material (Johnson,

2013). The Material Master isn’t just a single file but a number of tables of information that

combined reflect all of the information for that material. The Material Master transaction is

structured so that there are entry screens for different functional information such as Purchasing,

Sales, or Accounting, but there is also an organizational dimension to data entry. The material

information can be entered at each level of the organization, for example, at the levels of plant,

storage location, or sales organization.

 SAP systems are multilingual, maintenance in multiple languages being possible (Ashfaque,

2014). The syntagma language dependency refers to the fact that all text-elements in the user

interface depend on the logon language. The logon language has to be automatically used for the

description of all menus, pop-ups, tabs, areas, fields etc. Thus, global customizing and configuration

texts, that must be available throughout the enterprise in all countries in a local language, must be

translated. Because most of the customizing is customer - specific, almost all international

customers need to translate this kind of data. Master data is an important area which requires

translation. The most important group in this category is material and product data. Because a global

enterprise offers identical products in many countries, the product descriptions must be translated

into all the languages of these countries.

 The SAP master data governance framework provides tools to ensure consistent master data

along end-to-end business processes, including language management (Jacob, 2012). Most objects

in the user interface are language-dependent, and the system uses resources tables/files to contain

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 7, Issue 2, June 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 26

the translations. The language dependency of the Material Master Data was modeled in a single

database table, solution that needed to be reconsidered in order to gain flexibility. Our demarche

consists of a technical solution to improve SAP Material Master Data language dependency,

solution that nowadays is subject of the final testing to become operational within the SAP MM

module.

2. Implementation of the SAP Material Master Data Application with language

dependency

2.1. Previous implementation. Drawbacks.

The Material Master Data Application provides an update popup layout, including tabs, areas

and fields (also customer-specific fields). Each tab consists of one or more areas and each area of

one or more fields, similar to the example below (figure 1). The application is called flexible

because the user must have the possibility to add, delete, reorder or rename tabs, areas and fields.

Figure 1. Popup layout for the Material Master Data Application

The correct update of the fields has to be ensured. For each field the user can choose

between initializing it, updating it to a certain value or ignore it (by leaving it blank).

The layout should remain consistent throughout different languages, supporting the logon

language of the user. The text of all tabs, areas and fields should be translated into the chosen

language. However, it has to be possible to maintain the labels in different languages (Ong, 2014).

In the previous implementation there has been used a single database table which did not

provide a consistent overview of existing tabs, areas and fields, as well as of the languages, in which

a specific field of an area or tab was translated. So, it was difficult to maintain this database table by

the customizing end-users in different languages, because every update of a tab, area or field

M. Muntean, C. Muntean - Redesigning a Flexible Material Master Data Application with Language Dependency

 27

required a number of actions in this table which had to be done manually and very carefully,

requiring much time and attention. The number of rows of this table was very large and the content

looked like the one shown in figure 2.

Figure 2. Content of the single database table in the previous implementation

Every field in figure 1 is specified by the combination of the table name and field name (the

first two columns, in figure 2). If, for example, we wanted to add a certain field in the previous

database table, we had to carefully add lines in this table for every language, in order not to have

typos, case in which the field was not displayed in the corresponding tab or area. Therefore, in order

to avoid this, in the new implementation we want to keep track separately of tabs, areas and fields.

Then, if we want to insert a new tab, this should be maintained in the tab page. In order to enter a

new area, this area should be entered in the area page, corresponding to a certain tab. In order to add

a specific field, this has to be added to a certain area, which corresponds to a certain tab.

2.2. Proposed solution based on cluster view

 The proposed solution suggests the use of five database tables instead of the single table in

figure 2. The five tables, named TAB, TABT, AREA, ARET and FLD, are combined within three

views (TABV, AREV and FLDV) which build a cluster view, TAFC (figure 3).

Figure 3. The logical data model of tables and views

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 7, Issue 2, June 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 28

The description of the objects in the figure above is specified in Table 1:

Table 1. Description of the objects used in the logical data model
Object Name Description

 Dictionary Objects

 Database Tables

 TAB Tabs for Popup

 TABT Translation of Tabs

 AREA Areas for Popup Tabs

 ARET Translation for Areas

 FLD Fields for Areas of Popup

 Maintenance Views

 TABV View of Tabs and corresponding Translations

 AREV View of Area for Tabs and corresponding Translations

 FLDV View of Fields for Popup

 View Cluster

 TAFC Table-Area-Field-Cluster

 All database tables have the delivery class C (customizing table), and Display/Maintenance

is allowed. As for the technical settings, APPL0 (Master data, transparent tables) with the size

category 0 has been chosen.

 The enhancement category for these database tables is: Can be enhanced (character-type or

numeric).

 The structure of the tables, primary keys and foreign keys are shown in figure 4:

Figure 4. Table structure and relationships

The names of the fields in the database tables are relevant for their content. Only the SPRAS

field in the translation-tables TABT and ARET must be explained: SPRAS is a system-field which

stands for the language and is used in order to maintain the languages in which the tab/area is

translated into.

M. Muntean, C. Muntean - Redesigning a Flexible Material Master Data Application with Language Dependency

 29

We note that the main database tables (TAB, AREA and FLD) have a field called

TAB_ORDER, AREA_ORDER or FIELD_ORDER, so the customer may arrange the tabs, areas

and fields in the desired order.

The translation tables (TABT for the tabs and ARET for the areas) contain beside the data

also a language field and a translation field for the corresponding language, which has a different

data element assigned, in order to also display lower case characters.

Beside the tabs and the areas, the database table FLD also contains the fields TABLENAME

and FIELD, which suggest the related parameters, whom input may be updated at runtime. Through

standard SAP functionality the tables in BASIS, respectively their fields are by default translated in

the login language of the user. So in the fields TABLENAME and FIELD of the FLD table, we will

obtain, in the user login language, the names of the tables and fields from BASIS via the foreign

keys to the table DD03L for TABLENAME and to the table DD02L for FIELD.

Beside the database tables, 3 maintenance views have been created, TABV, AREV and

FLDV, for the tabs, areas and fields of the popup (figure 5). We have chosen maintenance views

instead of database views to be able to use them in the view cluster.

Figure 5. Maintenance Views

For all these tables and views, table maintenance generators have been created and activated,

in order to have the possibility to manage individual datasets in every table and view. The

corresponding names of those function groups for the table maintenance generators are the same

names as those for the views.

The purpose of these maintenance views is only to take care of the input data more

efficiently. These views will be used later in the view cluster, which ensures a hierarchical order of

the data. Therefore, the maintenance views will also include the predecessor, in order to facilitate

linking in the field dependency tab of the view cluster (Swapna, 2007).

 These three maintenance views are embedded in the following view cluster (figure 6):

View cluster TAFC

 Object structure

 View/Table Short

text

Predecessor Dependency Position

 TABV Tabs TABV R (Root) 1

 AREV Areas TABV S (Dependent on higher-level entry) 2

 FLDV Fields AREV S (Dependent on higher-level entry) 3

Figure 6. View cluster TAFC

Field dependency has been generated automatically and as a result the following desired

structure has been achieved (figure 7):

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 7, Issue 2, June 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 30

Figure 7. Dialog structure of the View Cluster

After populating the database tables with data in different languages with the help of the

view cluster, the popup has been adapted in order to support the translation of the tabs and areas.

 Supplementary internal tables have been defined in the function module POPUP_FLEX, in

order to copy data from the translation tables. The corresponding SELECT statements have been

embedded in TRY-CATCH blocks, in order to prevent short dumps due to faulty selection

processes.

 Similar to the previous implementation, the data regarding the tabs, areas and fields have

been read in loops, corrected with avoiding SELECT statements within these loops. In case of

embedding select statements within loops, this would affect the performance of the application, and

would not be recommended by any programmer. Therefore, the select statements are situated right

after the data declaration section and all data is selected from the database tables into internal tables.

We can work further only using the internal tables at runtime, and avoid accessing the database

within the loop statements every time we pass through that loop.

 After selecting all the data we need for the loops and having all the necessary tabs, areas and

fields in our internal tables, the corresponding translations have been accessed with the READ

TABLE instruction separately, using the WITH KEY addition, so in case that one translation is

missing, the name of the tab or area will be displayed instead.

 In the INITIALIZATION event, the title bar and the GUI Status (Execute and Cancel

buttons) have been adapted, in order to support language dependency.

 The shared memory area classes have been adapted, similar to the previous implementation.

Also, the text message classes remain the same.

 Based on a new data organization and implying the introduction of three views and a view

cluster the so-called language dependency has been improved. The redesigned application offers an

easier maintainability of the data (fields, areas and tabs can be easily added, deleted, reordered and

renamed) and all the data within the view cluster can be translated into any language supported by

the system.

3. Advantages of the proposed solution

The proposed solution is a technical solution designed for the SAP MM module in order to

improve language dependency according to the user logon language. The solution is recommended

to be implemented in the SAP systems, the following benefits being ensured:

1. Consistent overview of existing tabs, areas and fields, as well as of the languages, in

which a specific field of an area or tab is translated

In the previous implementation, without having a unique name or code for a certain tab, but

only the corresponding translations for different languages, there was no possibility to obtain (by

sorting or filtering), the languages a certain tab was translated into.

Now, having a unique tab name, which is not dependent on any translation, we can view all

existent translations with the help of the TAB and TAB_TRANSLATION fields of the TABT table.

Similar, having a unique area name, which is not dependent on any translation, we can view all

existent translations with the help of the AREA and AREA_TRANSLATION fields of the ARET

table.

M. Muntean, C. Muntean - Redesigning a Flexible Material Master Data Application with Language Dependency

 31

2. No previous translation search is necessary in order to add a field

In the previous implementation, we had to search for a translation, if we wanted to add a

certain field of a specific area or tab. In case of not searching or finding the correct translation, just

by adding directly a line, without verifying the correct predecessors, there was the possibility to add

a new, but not identical translation. The newly added field could easily be interpreted as belonging

to a new area or tab.

In the new implementation, using the view cluster, this can be avoided, by selecting a certain

tab, which is now uniquely defined (not by the translation, but by the tab name, i.e. the TAB field in

TAB table) and then by selecting the desired area, for adding a new field in the popup screen.

3. Easier maintainability of translations

As described earlier, the previous solution didn’t provide any overview of the existing

languages, in which the application was translated. One had to manually check the entries of the

database table in order to add new data.

Using the view cluster solution, it’s easy to select all tabs or only certain tabs, all or only

certain areas, and translate them in one or more desired languages, using the Goto -> Translation

option, provided by the main menu of the view cluster.

For example, we select in the view cluster the tab called “Forecasting” and then choose Goto

-> Translation (figure 8). After selecting Goto -> Translation, we obtain a selecting window for the

desired languages where the user can check one or more languages to translate those tabs or areas

into.

Figure 8. GoTo -> Translation Option

After checking a few (or all!) languages for instance and pressing the Ok button , we

obtain the windows shown in figure 9a, or respectively 9b for all languages. Here we can add one or

more missing translations, or modify one or more of the existing translations accordingly.

All the data within the view cluster can be translated into any language supported by the

system.

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
Volume 7, Issue 2, June 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 32

Figure 9a. Translation of a tab for certain languages

Figure 9b. Translation of a tab for all languages

4. Possibility to sort tabs, areas and fields based on an order number

In the previous implementation, there was no order defined for the tabs, areas and fields and

therefore in the popup screen, the tabs, areas and fields appeared in the sequential order, as they

were processed in the SQL SELECT command of the database table.

In the new implementation, in the TAB table is a TAB_ORDER field, in the AREA table is

an AREA_ORDER field and in the FLD table is a FIELD_ORDER field, where the user can define

the desired order for the corresponding item.

5. Avoiding human error regarding missing translations

In the previous solution, all data was selected into an internal table at runtime, depending on

the user login language. If no data was found in the login language of the user, the default language

was set to English. Further, the tabs and areas have been chosen from the internal table using the

SELECT DISTINCT command. This approach lacks the ability to display an area, which has not

been translated. Besides, there hasn’t been implemented a solution in case of a void result of the

SELECT statement.

The new implementation corrects this behavior by using the TRY-CATCH blocks. If the

result of a selection is void, the block catches the error and raises an exception inside the function

module. At runtime, the new implementation provides the selection of the fields from the FLD

database table. Within the SELECT statement has been used the ORDER BY clause. For the next

M. Muntean, C. Muntean - Redesigning a Flexible Material Master Data Application with Language Dependency

 33

TRY-CATCH block, the SELECT statement has been adapted with the FOR ALL ENTRIES IN

clause, in order to select data, which has a correspondent in the internal table of the fields. This

clause is Open SQL specific and is often used in ABAP programs (Hardy, 2015). The only

disadvantage of using this clause will be the fact that we can no longer use the ORDER BY clause.

The solution for this matter is easy to solve by using an ABAP SORT command after the TRY-

CATCH block. After the selection of the tabs and areas, the corresponding translation is selected

into other internal tables at runtime.

4. Conclusions

 Material masterdata is an important area, and therefore the corresponding translations play a

key role. The most important group in this category is the material and product data maintenance.

Because a global enterprise offers identical products in many countries, the product description

fields must be translated into all the languages of these countries.

In this paper we present a way to modify the underlying schema of the original SAP Material

Master data Application in order to facilitate the management of tabs, areas and fields contained in

the popup layout, for different languages. The previous implementation of the language dependency

was based on a single database table that couldn't provide a consistent overview of the existing tabs,

areas and fields. Further, there was no possibility to select the appearances of a specific field in all

translations. Improvements have been required in order to increase the flexibility of the function

module. Our proposal is based on a cluster view implementation described in detail in paragraph

2.2. The benefits of this approach are evident in terms of consistency and ease of maintenance.

Disadvantages like updating manually the database table for inserting, deleting or renaming tabs,

areas and/or fields, no possibility to change the sequential order for tabs, areas and fields in the

popup screen, or no possibility to view all translations for a certain tab or area, have been

eliminated. Furthermore, during the testing phase, the following advantages have been validated: 1-

Consistent overview of data; 2- No preliminary preparation is necessary for adding data; 3- Easier

maintainability of translations; 4- Possibility to sort data based on user choice; 5- Bypassing human

negligence.

 The proposed solution is dedicated for SAP systems, concrete technical aspects of the SAP

MM module being taken into consideration. However, the approach framework can be applied to

similar demarches of other software applications.

 References

Johnson, M. (2013). SAP Material Master: A Practical Guide, Expresso Tutorials GmbH

Ashfaque, A. (2014). The SAP Material Management Handbook, CRC Press - Taylor & Francis

Group, LLC

Jacob, R. (2012). Language Installation on SAP systems - Steps by steps. Retrieved from

http://scn.sap.com/community/netweaver-administrator/blog/2012/12/10/installation-of-

languages-on-sap-systems

Ong, O. (2014). SAP Language Handling and Language Installation Procedure, Retrieved from

https://www.academia.edu/15795712/SAP_Language_Handling_and_Language_Installation_

Procedure

Hardy, P. (2015). ABAP to the Future, Rheinwerk Publishing Boston

Swapna, T.N. (2007). Creating a View Cluster, Retrieved from https://www.academia.edu/

15795712/SAP_Language_Handling_and_Language_Installation_Procedure

