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Abstract 
At present, manual observation of the electroencephalogram (EEG) signals is the prime 

method for diagnosis of epileptic seizure disorders. The method is a time consuming and error 
prone as it involves errors due to fatigue in continuous monitoring of nonlinear and nonstationary 
EEG signals. Out of approximate 1% of the world’s epilepsy patients more than 25% cannot be 
treated correctly due to erroneous diagnosis. The automated seizure detection system can prove 
efficient by making the process reliable and faster. This paper reviews multi-domain feature 
extraction and machine learning classification techniques used in automated seizure detection 
systems. To analyse subtle variations in EEG, signal decomposition algorithms have been used in 
time, frequency, joint time-frequency, and nonlinear domain. The statistical and entropy parameters 
are the key features to discern normal from the seizure EEG signals. Machine learning plays a 
critical role in extracting meaningful information out of the extracted features. The paper also 
evaluates the performance of Multilayer Perceptron Neural Network, naïve Bayes, Least Square 
Support Vector Machine, k nearest neighbour, and random forest classifiers using sensitivity, 
specificity and accuracy metrics. A seizure detection technique is developed by decomposing the 
EEG signals by  means of Tunable-Q Wavelet Transform (TQWT). To quantify the complexity of 
the individual multivariate sub-bands of the biomedical signals TQWT proves effective with varied 
values of Q factor suitable for analyzing signals with oscillatory and non-oscillatory nature. The 
highest accuracy of 97.3% is obtained using random forest classifier for the combination of spectral, 
Shannon and Kraskov entropy features. The paper compares the performance of feature extraction 
and classification techniques for the implemented system. The comparison explores possibility of 
hardware implementation of real time seizure detection scheme. 
 

Keywords: Seizure Detection, Tunable-Q Wavelet Transform, Shannon entropy, Kraskov 
entropy, Least Square Support Vector Machine, Random Forest 
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 1. Introduction 
 Epilepsy is a widespread brain disorder which affects a variety of mental and physical 

actions. When more than two episodes of seizures occur in a lifespan of a person then they are 
categorized as a seizure patient. Epileptic seizures are provoked by group of nerve cells which affect 
a person’s normal behavior. This sudden brain signal change is life intimidating in few cases as it 
can cause physical injury to the affected person. In the form of partial and generalized seizures the 
abnormal brain activity poses a very important health concern to the patient. Partial seizures start 
with a specific area of brain and usually called the epileptic foci. Partial seizures may or may not 
affect conciseness of a person. Generalized seizures involve seizure signals originating from most 
part of the brain and cause loss of mental alertness and muscle spasms. The process of 
‘epileptogenesis’ is highly unpredictable and the risk involved in the form of injury is very high (D. 
Buck, 1997). The seizure disorder occurs due to several causes such as birth asphyxia, stroke, 
traumatic brain injury or brain infections. The seizure disorders are not preventable or in some cases 
not completely curable but with the help of anticonvulsant drugs the life threatening seizures can be 
controlled in majority of the cases (Englander J., 2014). 

 The episode of epileptic seizures occurs as the brain’s controlled neonatal firing circuit 
malfunctions and causes excessive electrical discharge by a group of nerve cells in the brain cortex. 
This processing is sudden and unpredictable. Depending upon the side of cortex, out of four sides 
namely frontal, parietal, occipital and temporal which originates the abnormal signals, the 
abnormalities in the motor control results in tonic-clonic movements of muscles and joints. The 
discharge of electrical energy in a normal brain cells is controlled and produces variations that are in 
normal magnitude ranges. However an abrupt and large transient rush of energy by the brain cells 
results in epileptic seizures. An epileptic seizure can show variation in properties of brain waves 
which can result in a short term muscle movement to severe convulsions. These variations mainly 
depend on the area of the brain from which the energy is generated, the level of electrical energy 
discharge and the total area over which this energy is extended in the event of abnormal activity 
(Acharya U., 2013). 

 The working of brain and its properties that cause epileptic activities are still a mystery. 
When a person experiences epileptic activity the possible observable signs are sudden movement of 
the body parts, loss of concentration, muscle involuntary movement, disturbance in visual and 
auditory senses and mood disorder. There can be several changes in a person suffering from mild to 
severe epileptic attack which are beyond the range of normal observations. When the seizures are 
seen in children who have limited knowledge about the situation that they experience it become 
difficult to notice the seizure onset. This pre-seizure behavior changes in children are linked to the 
behavioral disorder. Hence, children with epileptic disorder need continuous monitoring and thus 
the epilepsy observation is a continuous process. In order to make the process fully automated with 
indication of seizure occurrence many signal processing algorithms need to be considered with 
detailed analysis. In order to detect epilepsy using automated Computer Assisted Diagnostic (CAD) 
techniques using EEG signals understanding the physiological aspects of the seizure signal class is 
essential (Sanei, Saeid).  

 In this work, a Tunable-Q Wavelet Transform (TQWT) (IW Selesnick, 2011) based seizure 
detection system is proposed which uses spectral and entropy based features to test performance of 
five classification algorithms. Figure 1 shows the proposed block diagram of TQWT sub-band’s 
spectral and entropy feature based seizure classification system. As shown in figure, the features for 
two TQWT sub bands namely, sub-band 1 and sub-band 16 are taken to consideration for the 
feature extraction from normal and seizure EEG signals. The oscillatory information contained in 
the signal is reflected in the TQWT sub bands with low frequency content represented in the first 
sub band and the last sub band representing the high frequency oscillation. The EEG signal 
decomposition technique quantifies the sub band spectral and entropy features for low and high 
frequencies and this can be a widespread method to detect seizures from other EEG recording with 
appropriate choice of the Q-parameter. The efficacy of features extraction and classification 



D. Torse, V. Desai, R. Khanai - A Review on Seizure Detection Systems with Emphasis on Multi-domain Feature 
Extraction and Classification using Machine Learning 

 

 111 

algorithms is tested using computational complexity and the effectiveness of the proposed technique 
for hardware implementation. The performance of the designed algorithm is tested on the real time 
data recorded from epileptic and normal patients from a local hospital. The efficacy of the tested 
method motivates to build an automated seizure detection system to assist neurologists to diagnose 
the epilepsy and related disorders with improved accuracy. 

 

            
Figure 1. Flow diagram of the structure representing a step-by-step idea of the proposed method 

 
The remaining part of the paper is arranged as follows: In the following section, the different 

methods are reviewed that are currently used to detect epilepsy. In Section 2, a review on state-of-
the-art algorithms of EEG signal feature extraction and classification is presented for seizure 
detection system. The results obtained using the TQWT feature extraction and classification 
techniques are illustrated in the section 3 and discussion on comparison between various methods is 
presented in section 4. Section 5 concludes the paper. 
 

2. Literature Review  
This paper reviews seizure detection systems that have been developed using the EEG 

database from University of Bonn, Germany (R. G. Andrzejak,2001). The decomposition of EEG 
signals have been implemented time, frequency, joint time-frequency, and nonlinear domain. The 
statistical and entropy based parameters are used as the key features in machine learning algorithms 
to separate signals. 

 
2.1. Datasets 

 The dataset used in this work is mainly consisting of five subsets, out of which two cases, 
namely, normal (set N), and seizure (set S) were considered for the system developed in this work. 
The EEG signals of subsets N was recorded in normal signal intervals for 5 patients (subjects) in the 
epileptogenic region. The subset-S is composed of EEG signals with seizure action recorded from 
all the electrodes showing seizure activity. The bio potentials of subsets N and S were recorded 
intracranially. The 128-channel amplification system is used to record the signals with an average 
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common. To record the signal, depth electrodes were inserted symmetrically into the hippocampal 
formations. The basal and lateral regions of the neocortex were used to insert strip electrodes. The 
EEG was recorded during epileptic seizures is termed as ictal activity. Figure. 2–3 show sample 
recordings of datasets N and S respectively. Each dataset contains 100 single channel recording 
with a 4097 samples and a sampling rate of 173.6 Hz. 

 

 
Figure 2. Normal EEG signal sample 

 

 
Figure 3. Epileptic EEG signal sample 

 
 Another clinical data was collected from patients receiving routine EEG examinations at Dr. 

Mohire’s Neurology Research Centre, Kolhapur, India. In total, routine EEG data from 30 
participants (15 men and 15 women) was included whose ages varied from 12 to 25 years. There are 
normal and seizure activity in the recorded EEG data signal. The dataset includes signals of patients 
who suffered headache but diagnosis did not reveal any kind of epilepsy. The written permission 
was obtained from the patients and the neurologist to approve the research work. To find the latent 
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of the technique in real-time, training and test samples were divided into 70% and 30% 
respectively.  

 
2.2. Pre-processing 
The process of 10-20 EEG recording system can suffer from contaminations and thus 

generate ambiguous signal affected by various noise sources. Although the vigilant design of the 
recording scheme and apt recording of signal procedures will be able to minimize the noise 
generated, a number of electrophysiological signals, mainly electrooculogram (EOG), needs careful 
elimination using signal processing techniques. The main cause of electrical spike generation during 
eye blink is an electrical dipole in the human eye which is a result of a positive cornea and negative 
retina. The Independent Component Analysis (ICA) was independently used to filter artifacts from 
EEG signals by (Maarten Mennes et al., 2010, Manousos A. Klados et al., 2011, Nadia Mammone, 
2012). The combination of Discrete Wavelet Transform (DWT) and ICA is studied by (Mingai Li, 
2012, Nadia Mammone et al., 2014). Another technique of adaptive noise cancellation using DWT 
was tested as a online predictive tool for ocular artifacts (Hong Peng, 2013). A method (Qinglin 
Zhao, 2014) demonstrates the elimination of ocular artifact by utilizing the Adaptive Predictive 
Filter (APF) techniques to improve true EEG by finding EEG eye movement artifact signal 
amplitudes. An automated online filtering is developed by using a combination of wavelet 
decomposition, ICA, and thresholding. The adaptive filtering has been compared with the ICA and 
PCA based methods in one of the studies to find computationally efficient method (2016, 
Dattaprasad A. Torse). The use of joint time-frequency domain approaches to process the EEG 
signals and preserve the useful information is explored by means of Empirical Mode 
Decomposition (EMD) (Gang Wang, 2016). The EMD method outperform the wavelet based 
methods as in EMD the signal is sifted for the predefined levels. The section of preprocessing stage 
depends on the application, dataset type used and complexity of the algorithm in terms of 
computation time.  

 
2.3. Feature Extraction 

 In many research papers, use of University of Bonn, Germany, database is made to 
categorize normal and epileptic EEG signals by means of pattern classifiers such as supervised and 
unsupervised. In (İnan Gűler, 2005, Pari Jahankhani, 2006, Hojjat Adeli, 2007), wavelet based 
coefficients have been used as features and classifiers were tested for classification of EEG into 
normal and seizure states. Most of the studies have aimed on implementation using software tools 
against the development of low cost, computationally efficient hardware for seizure detection. The 
combination of wavelet and PCA and Independent Component Analysis (ICA) with SVM 
classifiers was studied to classify EEG signals (Subasi and Gursoy, 2010). The epileptic EEG was 
analyzed with entropy features using Principal Component Analysis (PCA) enhanced Radial Basis 
Function (RBF) neural network and Support Vector Machine (SVM) classifier by (Ghosh-Dastidar 
et al., 2008, Oliver Faust et al., 2010) respectively. The Discrete Wavelet Transform (DWT) has 
been extensively used to decompose EEG signal into different sub-bands to find detail and 
approximation coefficients (Tapan Gandhi, 2011, Rami J. Oweis, 2011, Esma Sezer, 2012). The 
kNN classifier was tested for DWT based variance features (Shufang Li, 2013). The 1-NN classifier 
resulted in the overall accuracy of 99% as compared to complicated SVM classifier. The DWT-
entropy feature set resulted 100% accuracy in another study by (Yantindra Kumar, 2014). Using 
multiple classifiers the performance of DWT and entropy is assesses in (Oliver Faust, 2015). In 
another study on DWT (Jiang-Ling Song, 2016), automated detection of epileptic EEGs is 
presented using a novel fusion features which characterize the similarity between signals and 
extreme learning machine. The LS-SVM, feed forward multi-layer perceptron neural network, kNN 
classifiers have been considered to identify epileptic seizure using Wavelet Packet Decomposition 
(WPD). Five mental tasks were classified using SVM for categorization of epileptic seizures using 
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WPD and approximate entropy (ApEn) and sample entropy (SampEn) (Yong Zhang et al., 2015). 
The effect of WPD based log energy entropy is studied by (Raghu, Sriraam, 2015).  

 
2.4. Tunable Q Wavelet Transform   

 In the literature, existing time-frequency domain analysis techniques are providing constant  
Q-factor in accordance with the signal. On the other hand, TQWT can tune the wavelet’s Q-factor 
in accordance with the signal. In TQWT it is apparent that the EEG signal under study can be 
decomposed into sub-bands with different properties. Thus TQWT is a flexible and fully discrete 
wavelet transform that is particularly suitable for analyzing oscillatory signals (IW Selesnick, 
2011). It achieves flexibility by adjusting its input parameters such as Q-factor (Q), rate of over-
sampling or redundancy (r), and number of levels of decomposition (J). The excessive noise that is 
unwanted is controlled by the parameter ‘r’ in order to localize the wavelet temporally. Without 
affecting the shape of the decomposed signal ‘Q’ controls the number of oscillations of the wavelet. 
TQWT decomposes an input signal x(n) into (J+1) sub-bands for ‘J’ level of decomposition by 
employing two channel filter banks in an iterative method. The two channel filter banks are applied 

to the low-pass sub-band. In every stage, x(n) is decomposed into 
0

( )l n  and 
0

( )h n . The 
0

( )l n is 

low-pass sub-bands and 
0

( )h n  high-pass sub-bands. The low and high pass sub-bands have 

sampling frequency of fs and fs  respectively. The scaling factors are denoted by α and β and fs 

is the sampling frequency of x(n). The Low-pass filter ( )0H  and ( )1H  , with low-pass scaling α 
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 The ( )i is the Daubechies filter’s frequency response with two vanishing moments given 
by: 

( ) 0.5(1 cos( )) 2 cos( ) ,   i i i i          (3) 
 The scaling factors are related to ‘r’ and ‘Q’ parameters as follows: 

2
  

1
r and Q

 

 


 

        (4) 
 The prime reason to select TQWT over other time-frequency techniques is due to various 

advantages of TQWT. Firstly, when a signal with little or no oscillatory activities, e.g. EEG, needs 
analysis demands a wavelet transform having a low Q-factor. On contrary, oscillatory signals 
demand relatively high Q-factor. However, majority of the wavelet transforms are unable to tune 
the Q-factors for signals containing varied oscillatory behavior. TQWT solves the difficulty by 
adjustment in Q-factors. Secondly, TQWT has been applied for the analysis of various biomedical 
signals (Hasan Ahnaf, 2016, Ram Bilas Pachori, 2016, Abhijit Bhattacharyya, 2017, Shivnarayan 
Patidar, 2017). The “rational transfer functions” of the filters in TQWT enhance computational 
efficiency and enables a perfect reconstruction of wavelet transform. These advantages motivate the 
use of TQWT in decomposing the EEG signal into sub-bands for further processing in the proposed 
scheme. In this paper, computational complexity of the algorithm is analyzed in order to improve 
the current Information Transfer rate of current BCI based seizure detection system. 

 
2.5. Spectral and Entropy Features  
The idea of the paper is to test the classification performance of five classifiers namely, 

Multilayer Perceptron Neural Network (MLPNN), Least Square Support Vector Machine (LS-
SVM), Naïve Bayes (NB), k Nearest Neighbour (kNN), and Random Forest (RF). For this purpose, 
spectral domain features are used to build primary feature space by combining minimum and 
maximum value, mean, median and standard deviation of EEG signals. This primary feature subset 
is combined with entropy features to build robust feature vector. The minimum and maximum 
values of EEG signals decomposed using TQWT are separately stored to create the first feature 
vector. The second feature vector is build using mean frequency, median frequency of the sub 
bands. In the third set only standard deviation of the absolute value of the coefficients are computed 
for each TQWT sub-bands. The standard deviation is effective frequency domain feature as it 
represents the average deviation of a random nature signal (Phinyomark A. et al.,2102). 

 The Mean Frequency (MF) is an average value of frequency computed as the summation of 
product of the EEG signal power spectrum divided by the total summation of the power spectrum 
(Phinyomark et al., 2012). The MF is also explained as the central frequency (fc) in (Du & 
Vuskovic, 2004). The definition of mean frequency (MF) is given by: 

   1

1

N
f Pi iiMF N
Pii






      (5) 

where fj is the frequency component of EEG power spectrum at the frequency bin i, Pi is the EEG 
power spectrum at the frequency bin i, and N is the length of frequency bin. In the study of EEG 
signal in time domain, N is usually defined as the next power of 2 from the length of EEG data. 
 Median Frequency (MFR) is a frequency at which the EEG power spectrum is divided into 
two regions with equal amplitude (Phinyomark A., et al., 2012a). MFR is moreover described as 
half of the total power. The description of MFR is as follows: 

   
1 1

MFR N N
P P Pi i ii MFRi i
   
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   (6) 
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In the standard deviation the averaging is computed with power and not using amplitude. It is 
calculated, first by squaring each of the deviations previous to computation of the average. In the 
final step, the square root is considered to balance for the initial squaring. The standard deviation is 
given by: 

   
2112 ( )

1 0

N
xiN i

 


 
 

   (7) 

where μ is the mean. 
 

2.5.1 Shannon Entropy 
For a given discrete probability distribution, Shannon entropy (ShEn) is defined as a measure 

of on average how much information is necessary to identify random samples from the given 
distribution. ShEn gives the average information present in the EEG signal. It uses a non-normalized 
method for estimation of entropy (Shannon, 1948) based on energy content in the EEG. The non- 
normalization Shannon entropy is given by: (Shannon, 1948), 

 ( ) ( ) log ( )ShEn H x P x p x
x
        (8) 

 As shown in Figure. 4, the ShEn feature values are negative due to the fact that the 
difference in the entropy parameters is negative. 

 
 2.5.2. Kraskov Mutual Information 
Normally, the seizure detection is carried out by extracting a set of analytic features 

extracted from EEG signals. These features need to fulfill similarities for signals of same class and 
represent variations for different class. The hidden nonlinearity and non-stationarity in EEG signals 
often results in variations in analyzing these signals for extracting features. The time-frequency 
signal representations using wavelet transform based features is a suitable method for analyzing 
nonlinear and non-stationary EEG signals. Recently, the Kraskov entropy based nonlinear features 
were developed and found applicable in EEG signal analysis (K.A. Veselkov, et al., 2010, A. 
Kraskov, et al., 2008). For measuring and characterizing nonlinearities of EEG signals many 
authors have employed the Kraskov entropy. It measures the Shannon entropy or differential 
statistical entropy of the EEG signals using the kNN sample with some distance measures such as 
Euclidean or Hamming. 

 
 

Figure 4. Plot of the Shannon entropy values for normal and seizure signal’s high and low frequency sub bands 
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Figure 5. Plot of the Kraskov entropy values for normal and seizure signal’s high and low frequency sub bands 
 
In continuous-time domain, the differential statistical entropy of d-dimensional random 

variable X with unknown density function f(x) is defined as: 
  ( ) ( ) log ( )H x dx x x       (9) 

The density function dx can be obtained by probability distribution function for the distance 
between xi and the k-nearest neighbor samples. The above equation results in Kraskov entropy by 
measuring the k-NN entropy. It can be expressed as follows (Kraskov, et al., 2008): 

 ˆ ( ) ( ) ( ) log( ) log ( )
0

Nd
H X k N C id N i

       


  (10) 

where (x1, x2, x3, . . ., xn) are n random samples of d-dimensional random variable X, ϕ(t) symbolizes 
the digamma function, Cd represents the volume of the d-dimensional unit ball that depends on the 
sample space. The term ( )i  is the distance between sample xi and its kNN sample points in d-
dimensional sample space. A more detailed explanation on mathematical aspects and other 
application is available from (Kraskov, et al., 2008). In Figure. 5, the KraEn features values are 
plotted for normal and seizure signal’s low and high frequency sub bands. 

 
2.6. Classification 
In machine learning, classification of EEG signals deal with the task of categorizing a set of 

classes to which a new reading belongs, on the basis of a training set of EEG feature set containing 
occurrences whose class relationship is identified. Based on the spectral and entropy features of 
TQWT sub bands, the classification of EEG signals is tested using five classifiers (Bishop, 
Christopher M., 2006). 

 
2.6.1 Multilayer Perceptron Neural Network (MLPNN) 
The MLPNNs with the ability to learn and generalize are most commonly used classifiers in 

EEG analysis and seizure detection. They need smaller training set and work fast with less 
complexity in implementation (Haykin, 2001). In the MLPNN, every neuron j in the hidden layer 
sums its input signals by multiplying the signal xi  and the strengths of the individual correlation 
weights wpq. The output yq is then computed as a function of the summation as: 

    q qp py W x     (11) 
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where f is the activation function. The activation function is to be selected depending on the 
application as a sigmoid or radial basis function. The addition of differences between the desired 
and actual values of the output neurons is squared and computed as:  

  
1 2

( )
2

q
q

Sum y ydq      (12) 

where ydq is the desired value of output neuron q and yq is the actual output of the neuron. Each 
weight wqp is tuned to decrease Sum as fast as possible. Depending on the training algorithm 
employed the wqp value is set for the computation (Haykin, 2001). The ANN model development 
primarily focuses on the training algorithms. A suitable training algorithm can result in the better 
model for prediction. An optimized training algorithm can also reduce the training time and provide 
a better accuracy. There are several training algorithms used to train a MLPNN and the most often 
used is the backpropagation algorithm (Haykin, 2001). The backpropagation algorithm is relatively 
easy to implement in which a search of an error surface using gradient descent is carried out. 
However, the error remaining in the local minima for indefinite time is a major challenge in the 
backpropagation algorithm. The long training sessions is another major concern in the 
backpropagation algorithm. Therefore, a lot of deviations to advance the convergence of the 
backpropagation were proposed in the literature. 

 
2.6.2 Least Square Support Vector Machine (LS-SVM) 
The focus in this paper is on the binary classification and LS-SVMs are least squares of 

SVM, perfectly suited for the application. In LS-SVM, a set of related supervised learning 
techniques analyze data, recognize patterns, and hence are used for classification and regression 
analysis. The method is based on using a quadratic error criterion with equality constraints as an 
alternative to a convex quadratic programming (QP) problem for classical SVMs. Least squares 
SVM classifiers, were proposed by (Suykens, 2002). The LS-SVMs are a class of kernel-based 
learning methods. The SVM is assuring classifier that reduces the error and increases the boundary 
to classify the data by separating hyper plane. The LSSVM is least squares formulation of SVM and 
contains the equality constraints. For two-class SVM, decision function is as follows (Suykens, 
2002): 

  ( ) [ ( ) ]
T

f x Sign g x b      (13) 
where w - d-dimensional weight vector, b - bias, and g(x) is a function that maps x into the d-
dimensional space. To obtain w and b values, the subsequent optimization problem can be created 
in the subsequent way: 

 
1 2

( , , )
2 2 0

NyT
J b e e

i
i

    



   (14) 

Minimize            
subject to equality constraints 

 [ ( ) ] 1 , 1, 2, 3, ...,
T

y g x b e i Ni i i       (15) 

where xi and yi are N i/o pairs. 

 
2.6.3. Naïve Bayes 
The Bayesian classifier is a supervised learning technique and a statistical method for 

classification. It is one of the classification algorithms that apply density estimation to the data to 
work out diagnostic and predictive problems. This classifier uses Bayes theorem, and naively 
presupposes that the predictors are conditionally independent for the given class of data. Despite the 
fact that the hypothesis is usually desecrated in practice, this classifiers yields posterior distributions 
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those are stout to biased class density estimates, predominantly where the posterior is 0.5 (the 
decision boundary) (Hastie, T., R., 2008). The naive Bayes assumption is that all the features are 
conditionally independent given the class label: 

   ( ) ( )
1

D
P x y c p x y cii

   


   (16) 

These classifiers allocate observations to the most probable class. The algorithm works as: 
1. An estimation of the densities of predictors inside each class. 
2. Modeling  subsequent probabilities according to Bayes theorem, i.e., for all k = 1,...,K, 

( ) ( )
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   (17) 

where: 
Y is the random variable equivalent to the class index of a sample set, X1,...,XP are the random 
predictors, and  π(Y=k) is the former probability for a class index k. 
3. Classification of the sample space by finding the posterior probability for all classes, and then 
assigning the sample space to the a class resulting in the highest subsequent probability (Hastie, T., 
R., 2008). 

 
2.6.4. k Nearest Neighbour 
kNN is a non-parametric supervised learning algorithm (D. T. Larose, 2004) in which use of 

class labels is made to stores all available cases and classify new data based on a similarity (distance 
function) measure. For the new sample data to be tested k number of training data closest to the test 
sample are estimated and the class that is most familiar amongst that k nearest neighbors is allocated 
as the class to the new test data. In this paper, the K nearest neighbors have been varied from 2 to 6 
and achieved the highest accuracy for k = 2. The distance was calculated by means of Euclidean 
distance similarity measure. The kNN are an example of instance based supervised learning in 
which based on the number of nearest neighbour value k is used to make the classification order to 
memorize the training set data. The classifier takes the decision about the class label based on the 
computation done in the previous step. In this work, the combination of stand deviation and 
Kraskov entropy features for the first and sixteenth sub band of the TQWT decomposed EEG 
signals were used to form the feature vector for kNN classifier. 

 
2.6.5. Random Forest 
A significant enhancement in classification accuracy are resulted from developing an 

ensemble of trees and allowing the vote for the most relevant class. Random forest is an ensemble 
tool that takes a subset of features and a subset of class variables to construct a decision trees. A 
merger of such multiple decision tree is achieved to obtain a more precise and steady classification. 
The bagging techniques is used to develop the ensembles by repeatedly producing the random 
vectors to administer the growth of every tree in the group (Breiman, 1996). Another techniques 
used to build the ensemble is to split the selection randomly from k best splits (Dietterich, 1998). In 
the optimization of RFs, a new training sets was produced by randomizing the outputs in the 
original training set (Breiman, 1999). In several papers on “the random subspace”, a technique was 
presented that does a random selection of a subset of features to use to develop each tree (Ho, 
1998). The RF is a practically suited classification algorithm as: 
 RFs are non-parametric and can model arbitrarily complex relations between inputs and outputs, 

without any a aforementioned assumption; 
 RF can classify nonlinear and nonstationary EEG data; 
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 RF are strong to errors in classes and are easily interpretable. 
For the given an assembly of classifiers h1(x), h2(x), . . . , hK (x), and by the training set 

drawn at random from the distribution of the random vector Y, X, describe the margin function as  

( , ) ( ( ) ) max ( ( ) )mg X Y a I h X Y a I h X jk k k kj Y
    


   (18) 

where I(·) is the indicator function. The margin measures the average number of votes at X, Y for 
the right class surpasses the average vote for any new class. For the classification to be promising, 
margin should be more. The generalization error is as follows: 

  
*

( , ) 0)
,

PE P mg X Y
X Y

       (19) 

where the subscripts X, Y indicate that the probability is over the X, Y space. 

In random forests, ( ) ( , )h X h X
k k

  .  

 
3. Results and discussions 
The automated seizure detection algorithm was developed and tested using two sub sets from 

Bonn University dataset. The efficacy of the designed algorithms has also been verified using EEG 
data recorded from a local hospital. The sample normal and epileptic EEG signals of 23.6 seconds 
duration are shown in Figure 2 and 3 respectively.  

 

  

  
 

Figure 6. 16 sub bands of  sample normal EEG signal decomposed using TQWT 
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Figure 7. 16 sub bands of  sample epileptic EEG signal decomposed using TQWT 
 
The selection of most encouraging value of Q and J is a significant step in signal 

decomposition using TQWT. To select the optimum value of Q and J, numbers of experiments were 
performed by taking only Shannon and Kraskov entropy features as a result of maximum 
classification accuracy. Further, the values of J were varied by keeping Q = 3. It was noted that the 
highest possible value of J with Q = 1 is 15. Hence, the value of J is varied from 3 to 15 and 
Shannon and Kraskov entropies were computed for each subband. Then, the classification was 
performed for varied values of J. The 16 sub bands of normal and ictal EEG data for a sample data 
are plotted in Figure 6 and Figure 7 respectively.   

It can be noticed that at J = 15, maximum variation in low and high frequency sub bands 
was obtained which resulted in more relevant entropy parameters and improved classification 
accuracy. Therefore, J = 15 was selected for additional experiments. After selecting J = 15, the 
value of Q was varied in steps from 1 to 3 and entropies are computed from 16 subbands for each 
value of Q. 

The plot of frequency response for normal and seizure sample EEG signal is depicted in 
Figure 8. The increase in r, while keeping Q unchanged, has shown the effect of increase in the 
overlap between adjacent frequency responses. The parameter r has no effect on the general shape 
of the wavelet of frequency response as they are governed by Q. With r>3, the number of levels J 
need to be increased to cover the same frequency range as a result of the increased overlap. The 
figures show the frequency responses on log frequency scale with an r of 3. 
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                                              (a)                                                                                 (b) 

Figure 8. Frequency response of TQWT sub bands for (a)normal, (b)seizure EEG signal sample 
The Figure 9 shows wavelets for 3-15 sub bands for r = 3. The figures display the wavelets 

and the frequency responses when Q is set to 3.0.  
 

  
           (a)                                                                                  (b) 

Figure 9. Wavelets for 3-15 sub bands for (a) normal and (b) epileptic EEG signal sample 
 

It is to be noted that the frequency responses are more narrow for Q =3, compared to the 
cases where Q was set to 1.0. With increasing Q from 1.0 to 3.0, more stages are needed to span the 
same frequency range because each frequency response is narrower. Here, we made use of 16 
stages divided into 2 parts for the purpose of display. 

The figures show a sample normal and seizure EEG signal decomposed using the TQWT, 
displays the subbands, and the distribution of energy across subbands. The seizure sample signal 
has a more oscillatory behavior than the normal signal used in the demonstration. It is interesting to 
note that out of total 16 stages specified the high-pass subbands (subband 1-8) have negligible 
energy as compared to the low-pass sub band (sub band-16). Because the first eight subbands have 
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essential zero energy, it was decided not to compute entropy features for these sub bands for normal 
signals. 

 

  

  
 

Figure 10. Energy distribution for sub bands(1-4 and 13-16) for (a) normal, (b) Seizure EEG signal sample 
 

The subscript in Subband-1 denotes the first level of subband. The subbands from Subband-
1 to Subband-16 are in decreasing order of frequencies. First 15 subbands were reconstructed from 
the detail coefficients, and 16th subband was reconstructed from the approximate coefficients. In this 
way, the values of Q and J were selected for further experiments. The different features were 
computed from all subbands and experiments were performed to find the best combination of 
features using various ranking methods and five different classifiers. Further, with Q = 3 and J = 15 
different nonlinear features are computed from each decomposed subband. All the computed 
features are combined to form a feature set of size  140×4 . 

The typical range of spectral and entropy features obtained from sub band 1-16 are shown in 
Table 1 and 2 respectively. The p-value statistical test (T. Dahiru, 2008) was applied to examine the 
discrimination ability of various features. Apart from spectral features, all other features were found 
to be significant with less p-values (p < 0.05) indicating their suitability for good discrimination of 
normal and seizure EEG signals. Further, the features were ranked using Receiver Operating 
Characteristics (ROC) (Zweig Mark H., 1993).  

The classification stage followed the steps where decomposition of TQWT and computation 
of spectral and entropy features was achieved for both normal and seizure types of EEG signals.  
After feature computation the next task was to divide features into training and test datasets for the 
performing classification of signal into two classes. To improve the classification performance and 



BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 8, Issue 4 (December, 2017),  
ISSN 2067-8957 
 

 124 

to provide faster and more cost-effective classifier the selection of the optimal set of both the 
feature sets is important. The p-test alone was not suited to describe the efficacy of the features 
employed in the classification. Hence, the method called wrapper-based feature selection, suggested 
in (Kohavi Ron, 1997), was employed for feature selection. The performance of five classifiers 
have been tested. The performance parameters of classification methods, such as specificity (Spec), 
sensitivity (Sens) and accuracy (Acc), were found by the 10-fold cross-validation process (Van 
Stralen Karlijn J., et al., 2009). The 10-fold cross-validation process has been used in this work to 
get unbiased performance of the classifier. Along with the above classifiers the wrapper-based 
feature selection algorithms have been carried out by the MATLAB machine learning and statistics 
toolbox (MATLAB, 2016) software on Intel ® CoreTM i5-7200 U CPU @ 2.5 GHz with 8 GB 
RAM.  

The parameters of LSSVM and RBF kernel like cost and gamma were set to 1 for the 
selected number of features. The performance evaluation of the proposed Shannon and Kraskov 
entropy features has been presented for EEG classification. The distinguishing ability of the five 
classifiers have been tested using the two classes (normal, and seizure). The Shannon and Kraskov 
entropies of decomposed EEG signals have been computed and used as a separate feature set as 
compared to the spectral features set. 

 
 Table 1. Spectral Features of the extracted TQWT sub bands (Q = 3, R = 3, J = 16). 

Mean Standard Deviation 
Scale No. 

Normal Seizure Normal Seizure 
1 9.834927 8329.427 11.56066 71.58755 
2 58.77755 11110.04 23.84113 65.25688 
3 47.77503 8932.082 20.76151 85.51468 
4 10.30816 446.1276 20.08941 114.6693 
5 130.0165 1539.636 428.3669 99.01905 
6 6.069761 243.3806 24.44858 106.087 
7 34.06279 5926.254 16.71747 95.69294 
8 33.06874 1857.898 11.7173 76.64777 
9 522.3913 2032.91 35.768 71.35347 
10 72.81399 28592.28 11.83377 251.9867 
11 16.94179 7297.517 6.223891 298.7179 
12 13.56822 3044.189 23.99828 116.3269 
13 7.512193 7857.243 6.081293 132.1923 
14 7.613255 426.0846 13.88737 287.1622 
15 6.310997 552.7713 113.0568 282.8694 
16 48.03316 86.0241 13.83567 79.17186 

 
In Table 1, the spectral features, namely, mean and standard deviation are projected. It 

signifies the computed value of SD by the projected technique for normal categories of EEG signals 
are less significant than expected, because of the absence of abnormalities present in signals. 
 
 Table 2. Entropies of the extracted TQWT sub bands (Q = 3, R = 3, J = 16). 

Shannon Entropy Kraskov Entropy 
Scale No. 

Normal Seizure Normal Seizure 
1 -7832.583117 -2120182.678 1.754068 3.25435 
2 -19938.80744 -5836813.985 1.977948 4.173407 
3 -21701.92126 -6969011.533 2.047737 3.642304 
4 -31714.94771 -153011.0566 2.197772 2.397555 
5 -1111243.781 -2075609.65 3.687368 3.24926 
6 -133957.6349 -102607.3996 1.663588 1.940963 
7 -33054.87133 -4459470.757 2.26557 2.829904 
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8 -11657.37693 -1497161.665 1.949023 2.905165 
9 -39067.18007 -622563.9997 2.312583 3.393844 
10 -10312.37088 -5192562.954 1.677248 3.961785 
11 -11278.44848 -5773207.133 1.815736 3.598474 
12 -26697.77175 -3530204.881 2.095272 3.058711 
13 -4380.662994 -5064415.974 1.443809 3.797015 
14 -8794.364987 -76324.63628 1.803797 2.19443 
15 -310926.8264 -106834.1615 3.172345 2.015378 
16 -18999.05462 -15945.06889 2.065524 1.944525 
 
In Table 2, the Shannon and Kraskov entropy values have been presented for normal and 

seizure signals. The use of MLPNN classifier depends on the number of iterations and the learning 
rate used for a specific transfer function employed in the design. In this work, the highest 
classification of normal and seizure signal using MLPNN reported was 92.5% for the Shannon 
entropy features. In the classification task, the entropy features outperformed the spectral feature. It 
was inferred from the MLPNN study that the tan-sigmoid and pure linear transfer functions were 
best possible for the application with backpropagation algorithm for the learning purpose. Two 
different datasets were tested using MLPNN for the learning rate of varying between 0.1 to 0.4 and 
the classification tasks were assessed using sensitivity, specificity and accuracy. The simulation 
results showed that the classification accuracy indirectly varies with the mutual range of entropy 
features, p-value, features selected using the wrapper test and Mean Square Error (MSE). 

Though, reasonably good classification accuracies were achieved from the five classifiers, 
the classification accuracy for ictal and non-ictal (S-N) EEG signals using KNN and naïve Bayes 
classifiers are 86.1% and 84.6%, which are significantly low. 

 
 

Figure 11.Receiver Operating Characteristics (ROC) graphs for LS-SVM, naïve Bayes and random forest 
classifiers 

 
As compared to conventional KNN and naïve bayes classifiers, the performance of the 

proposed random forest classifier with feature selected using wrapper test is very promising. In 
Table 3, a comparison of classifier performances are presented using proposed features. In this 
technique, the parameter (Q) is varied to obtain enhanced discrimination between two classes. 
Many decomposition levels of TQWT are set to 8 and 16, respectively, to set the significance of the 
number of sub-bands in the entropy based classification. The ROC curves for LS-SVM, naïve 
Bayes and KNN classifiers is shown in Figure 11. 

In all the classifiers, the accuracy increases by taking into account J = 16. For Q = 3, R = 3 
and J = 16, major enhancement in classification accuracies have been achieved for random forest 



BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 8, Issue 4 (December, 2017),  
ISSN 2067-8957 
 

 126 

classifier. Many classification tasks, like normal-seizure and seizure-interictal have shown 
promising results for entropy feature. The maximum accuracy of 97.3% was attained for naïve 
bayes and kNN classification tasks. The maximum classification accuracy of 97.3% was obtained 
using random forest classifier. For the normal-seizure classification, the highest classification 
accuracy obtained was 98% with the Kraskov entropy with decomposition using TQWT for the 
values specifies as Q = 3, R = 3 and J = 16. The performance of classifier through the combination 
of Shannon and Kraskov entropy features is also noteworthy.   

 
Table 3. Classification performance of MLPNN, LS-SVM, naïve Bayes,  KNN, and random forest classifier 

Classifier Sens(%) Spec(%) Acc(%) 

MLPNN 91.5 90.5 92.5 
LS-SVM 94.5 93.2 95.6 

naïve Bayes 85.2 85.3 84.4 
KNN 87.3 84.3 86.1 

random forest 94.5 95.6 97.3 
Table 3 revels the classification accuracies for the majority of classifiers presented in this 

paper. The Table 3 presents comparison of the proposed entropy features based classifiers and their 
classification performance on the EEG database acquired from Dr. D. M. Mohire’s Neurology 
Research Centre, Kolhapur, INDIA. In most of the cases, the combined entropy features have 
shown equivalent performance with the optimum algorithms described in the literature. The 
proposed system may prove useful in the detection of seizures and aid the neurologists to take 
accurate diagnostic decision pertaining to the epileptic seizure disorders. 

 
4. Conclusion 
Manual monitoring of EEG to diagnose epilepsy is a very challenging task with 

cumbersome work of observing long recordings and decision making through experience. The 
automated seizure detection is a promising tool for neurologists in making epilepsy diagnosis. In 
this paper, an automated method based on varied values of Q is developed that decomposes EEG 
signal, computes Shannon and Kraskov entropies and detects seizure signal using random forest. 
The method achieved classification accuracy of 97.3% and sensitivity and selectivity of 94.5% and 
95.6% respectively. A literature survey is presented on the current studies that are related to single 
channel seizure detection. A comparison table showing different seizure detection methods show 
that most techniques use joint time-frequency domain signal decomposition and entropy features. 
Several research papers have explored multi-domain features to build robust feature space. It is 
clear also that the TQWT is a promising trend for seizure detection and prediction that needs further 
investigation. The separation of normal and seizure event based on the extracted features is 
achieved by employing state-of-the-art machine learning classifiers. Majority of the studies focus 
on improving classification accuracy using remotely accessed resources. However, there is 
increasing demand to implement the algorithms on local embedded system to reduce computational 
complexity. The main goal behind this review is to explore the field of EEG signal analysis in real 
time and accept the same to detect epileptic disorders using EEG recordings.  
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