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Abstract 
In this article we formulate and analyze a class of diffusion PDE models for oscillation 

systems of coupled–elasticity in 2-D bounded domains. Approximate method in Green-Lindsay 
formulation with thermal and diffusion relaxation times has been developed.  Basic Boundary-
contact problems for isotropic inhomogeneous finite and infinite media with the inclusion of 
piecewise elastic material in assumptions that surface is sufficiently smooth have been investigated. 
The tools applied in this development are based on singular integral equations, Laplace transform, 
the potential method, Green’s Tensors and generalized Fourier series analysis. 
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1. Introduction 

  Many methods in the theory of non-classical thermo-elasticity require to the solution of 
boundary-contact problems (BCPs). A great attention is payed to the construction of solutions in the 
form that admit efficient numerical evaluation (Chumburidze, 2014; Kupradze, 1983). In this work, 
a numerical approximation for the solution of BCPs for 2-D oscillation systems coupled thermo-
elastic diffusion materials (Chumburidze, 2017) with thermal and diffusion relaxation times has 
been developed. In particular, the problem is investigated for isotropic piecewise inhomogeneous 
elastic materials with sufficiently smooth surfaces. Solutions for the finite domain when oscillations 
are not equal to the natural frequencies and for infinite domain in assumptions that solutions satisfy 
of radiation conditions in infinite have been constructed.   
 Algorithms of numerical solution have been obtained for particular cases of boundary-
contact conditions when the couple-stresses components, displacement components, rotation, heat 
flux and temperature, concentration and chemical potential are represented on the surface of Holder 
class.  

Throughout of paper we introduce the following notations: E2 two-dimensional Euclidean 
space, 

x=(xj); y=(yj); j=1,2 - points of this space,  
 

D(0) is infinite domain with inclusion another elastic material D(1)  
 

 bounded by the close surface SL(2)(), >0 with outward 
positive normal vector. 
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Investigation of pseudo oscillation systems of generalized coupled thermo-diffusion model 
for 2-D isotropic homogeneous elastic materials in the Green-Lindsay (Green, Lindsay, 1972) 
formulation is presented in (Chumburidze, 2014).  

Let us consider isotropic inhomogeneous elastic materials. In this case, in order of results in 
publications (Chumburidze, 2016; Burchuladze, 1985) the following mathematical model has been obtained: 

 
where u=(u1,u2) is a displacement vector, u3 is a characteristic of rotation, u4 is a temperature 
variation, u5 is a chemical potential,  

, 

- constants of elasticity of D(r) domains (r=0,1),  is a two-dimensional Laplacian operator; 
 (corresponds to the general dynamical problems) (Chumburidze, 2016; Sherief, 

2004),  
(r) = ((1r), 3r, 4r, 5r) =(1r, 2r, 3r, 4r, 5r) C0,(D(r)), >0 are the given vectors. 
are the given vectors.  

Let us construct matrices of generalized stress operators of coupled thermo-elasticity in  D(r) 
domains:  

 

 
 

 The matrices of (1) pseudo oscillation systems have the form: 
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 Therefore, (1) can be written in the form: 

  
 
2. Approximate Solutions of BBCP 
In our investigations, we consider BBCP of pseudo oscillation problems in  assumption that 

are not equal to the  natural frequencies in internal problems and satisfy of radiation conditions 
for external problems (Chumburidze,2016, Eshkuvatov, 2009): 

 
 
3. Statement problem. It is required to find regular solutions U(x) = (u, u, u4, u5) with 

thefollowing conditions: 
 

 
 

 The existence and uniqueness of this solution has been proved in (Chumburidze, 2014), 
(Kupradze, 1983). 

 
4. Solution 

 Solution of the Problem will be found by use the formula of regular solutions 
(Chumburidze, 2014), (Constanda, 2014). Take in account of   boundary-contact conditions (4) we 
will get: 

 
( 6  

(7) 
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(8) 

Where 

 

 
- fundamental solution of (3) system (Chumburidze,2014, JIANG, 2011). Symbol  

sign transpose of a matrix. 
Allow us consider the matrices: 

 
And a vector of ten components: 

 
 Then (6) and (8) to get the following form: 

(9) 

                   (10) 
 
 Let us construct auxiliary domains  bounded by the closed surfaces  of Holder class 
(Chumburidze,2016) in the following assumptions: 

are everywhere accounted set of 

points.  
Let us insert points:    and   in (9) and (10) correspondingly, then we will get: 

                                  (11) 

(j=1,2,…)                 (12) 

In left side of equations (11) and (12) we have  scalar multiplications of  on the accounted set 
of vectors(Chumburidze,2017): 

    (13) 

                                                                                                                                                                       

And on the right side of same equations (11) and (12) we have vectors which are known. 
 Let us consider accounted set of vectors:  

    (14) 

Where 

                          (15) 

Allow us make  numbering of elements in (14) by the following form: 
 

(16) 

 
The next theorem is proved there: 
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Theorem. Accounted set of vectors is linearly independent and full in the space  

Proof: 
Let  us define the constants an(n=1,..,N) from the conditions of minimization Mean-squared norm: 
 

(17) 

 So,  are sought by the solution the system: 

 
 where  N  is any number. In order (16) we have: 

 
 However  accordingly (11), (12) and (15) we have: 

 
 Hence should be sought from the following system: 

    (18) 

 Take in account  the property of linearly dependent vectors we can discuss that (18) system 
is uniquely solvable(Chumburidze,2016) . 
Allow us construct the following vectors: 

 
We should prove that  are approximate solutions. 
Indeed in order  (5) and (7) we have: 

 
By using   Cauchy-Bunyakovski inequality (Chumburidze,2017)  we have: 

 

 
Where 

   functions are bounded (Chumburidze, 2014 Orlando, 1985). Also according to 

(17) we have: 

 
Therefore: 
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5. Conclusion 
 

Thus, approximate solutions of BBCP by using the boundary integral method and 
generalized Furrier series analysis for an infinite domain with inclusion another elastic material 
have been constructed. 

As a result, it will be shown that same method is reliable for obtaining numerical 
approximation for infinite domain with inclusion of several elastic materials. 
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