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Abstract 
Experimental evaluation of the cooperative multiagent systems (CMASs) provides an 

assessment way that should be analysed. In this paper, we propose an algorithm with acronym 
CoopRA that can make a deep performance characterization, based on different indicators, of the 
experimental evaluation results of a CMAS. This could lead to the formulation of helpful 
information in some decisions related to the performance of the studied CMASs. In order to validate 
the proposed algorithm, we performed a case study on a CMAS composed of simple reactive agents 
that operate by mimicking the problem/task solving of natural ants. We chose this type of 
cooperative multiagent system architecture, based on the fact that even in case of the cooperative 
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multiagent systems composed of simple efficiently and flexibly cooperating agents could emerges 
an increased problem solving intelligence at the system’s level. The evaluation was performed for 
the Travelling Salesman Problem (TSP) solving that is a well-known NP-hard problem, having 
many real-life applications. 

 
Keywords: intelligent system, cooperative multiagent system, NP-hard problem, travelling 
salesman problem, nature inspired computing, ant colony optimization, digital image 
processing, medical imaging.  

 
1. Introduction 
Cooperative multiagent systems (CMASs) represent a subclass of the agent-based systems. 

By cooperating efficiently and flexible, even in CMASs composed of simple agents could emerge 
an increased problem-solving performance that could result even in intelligence. Frequently, 
developed cooperative multiagent systems are considered intelligent based on the extremely 
performant problem-solving ability (Iantovics & Zamfirescu, 2013; Yang et al., 2003). Many real-
life difficult problem-solving is based on CMASs (Beni & Wang, 1993; Mir, Merghem-Boulahia & 
Gaïti 2009; Hao et al., 2017; Zamfirescu & Filip, 2010; Bouzouita, Chaari & Tagina, 2017; Khalil et 
al., 2015; Pătruţ, 2014; Arif et al., 2015; Filip & Leiviskä, 2009). There are different types of 
computational problems, which could be described by data, signals or images. Different kind of 
difficulties related to the image processing are treated in the papers (Kountchev & Kountcheva, 
2017; Georgieva, Kountchev & Draganov, 2014; Georgieva & Draganov, 2016). There are many 
approaches to image processing based on intelligent agent-based systems such as different medical 
image segmentation (see for example Bensag, Youssfi & Bouattane, 2015). Agent-based systems 
require often the treating of different security-related aspects. The papers and books (Iantovics, 
2015; Kerti & Nyikes, 2015; Nyikes, Németh & Kerti, 2016; Albini & Rajnai, 2018; Peng et al., 
2018; Flammini et al. 2009; Flammini, 2018) treats a variety of aspects and propose some solutions 
related to the security in different systems including agent-based systems. 

For the analysis of cooperative multiagent systems experimental evaluation results, usually, 
there are performed some traditional calculus like, for example, the average problem-solving time; 
in case of the TSP, the average length of the tour found in more consecutive running of the 
algorithm. There are several papers that propose some specific approaches related to different 
aspects of performance evaluation. 

Gordillo and Giret (2014) studied some specific CMASs applied in manufacturing that use 
algorithms for task allocation. The main contribution consists in the proposal of a mechanism to 
measure the performance of agent-based scheduling approaches for manufacturing systems. 

Ajitha and collaborators (Ajitha et al., 2012) performed an analysis of the performance of 
software systems. Software performance engineering is important in order to describe the 
performance of systems at the development stage. It is proposed a methodology to predict the 
performance of CMASs based on an approach that considers the importance of cooperative 
behaviour of the agents. In the proposal, a designed mathematical model and the Unified Modeling 
Language diagrams are used to give a quantitative measure to the cooperation of the agents.  

Dimou and collaborators (Dimou et al., 2015) outlined the lack of generalized methodologies 
for assessing the performance of agent-based systems. The authors consider that existing methods 
do not adequately address the complex nature of many systems. It is proposed a generic 
methodology for evaluating the performance of agent-based systems.  

We consider that on obtained experimental evaluations results can be performed some 
specific analysis that allows the formulation of different kind of useful conclusions related to the 
performance of studied CMAS operation. As examples, we mention: the verification of the 
experimental evaluation results normality, the verification of the experimental evaluation results 
homogeneity/heterogeneity and the spreading of the experimental evaluation results across the 
mean. In this paper, we propose a more complete analysis and characterization of the cooperative 
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multiagent systems experimental evaluation based on an algorithm called Characterization of the 
Experimental Evaluation Results (CoopRA). 

For the validation of the proposed algorithm, we present a case study in which a CMAS 
composed of simple reactive agents that operates like a colony of natural ants solves an NP-hard 
problem. It was selected this type of CMAS based on the fact that even very simple efficiently and 
flexible cooperating agents could have at the group/coalition or multiagent systems level an 
increased intelligence. It was selected a specific type of problem the well-known Travelling 
Salesman Problem (TSP) for the case study based on the consideration that is an NP-hard problem, 
which computationally is extremely difficult. A very large effort is put on the TSP solving. It have 
numerous real-life applications. Our proposed CoopRA algorithm is universal, it is not restricted to 
CMASs by the type of operation presented in the case study (is not dependent on the CMASs 
architecture, and the composing agents architecture) and is not restricted to CMASs that solve the 
type of problem that is solved in the case study. 

The upcoming part of the paper is organized as follows: in Section 2 is presented the 
proposed CoopRA algorithm for characterization of the experimental evaluation results of a CMAS; 
Section 3 presents the performed case study, in Subsection 3.1 is presented the solved NP-hard 
problem, Section 3.2 presents the general operation of CMASs that operates like colonies of natural 
ants, in Subsection 3.3 the operation of the studied CMAS is presented, there are presented and 
discussed the obtained experimental evaluation results and Section 4 presents the conclusions of the 
paper. 

 
2. CoopRA proposed algorithm for experimental evaluation results analysis 
We denote with IC a cooperative multiagent system composed of a set of agents denoted 

Ag1, Ag2,…,Agn; IC={Ag1, Ag2,…,Agn}. |IC|, |IC|=n represents the number of agents that compose 
IC. We consider the experimental evaluation of the IC system on a problem set denoted 
Probl={Prl1, Prl2,…, Prlk}. |Probl|, |Probl|=k denotes the number of problems used in the 
experimental evaluation. The obtained experimental evaluation results (solving of the problems 
Probl) are denoted as Exp={Exp1, Exp2,…, Expk}. Where: Exp1 denotes the obtained solution by 
solving Prl1; Exp2 denotes the obtained solution by solving Prl2;…; Expk denotes the obtained 
solution by solving Prlk. Figure 1 presents the main processing steps performed by the CoopRA 
algorithm. This is followed by the presentation of the CoopRA algorithm in details.  
 

Prl={Prl1, Prl2,…, Prlk} 

 Problems transmission for solving 
Ag1, Ag2,…,Agn 

 Problems solving 
Exp={Exp1, Exp2,…, Expk} 

 Performing an initial characterization of Exp 
Mean, SEM, LCI, UCI, 

Median, Mode, SD, Variance 

 Analysis of Exp homogeneity/heterogeneity 
CV/Degree of homogeneity 

 Calculates the Kurtosis and Skewness of Exp 
Kurtosis and Skewness;  

Visual representation/Histogram 

Verification of the Exp data normality 
Decision on Exp data normality 

Figure 1. The processing performed by the CoopRA algorithm 
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In the following, we discuss all the proposed indicators of the experimental evaluation 
results presented in the CoopRA algorithm and explain their meaning. 

K represents the number of solved problems used in the experimental evaluation. Mean 
represents the mean of the experimental evaluation results. The Standard Error (SE) of a parameter 
is the standard deviation of its sampling distribution. If the parameter or the statistic is the mean, it 
is called the standard error of the mean. SEM denotes the Standard Error of the Mean. CL denotes 
the Confidence Level of the Mean, we recommend the use of 95% in most of the cases. LCI denotes 
the Lower Confidence Interval of the Mean. UCI denotes the Upper Confidence Interval of the 
Mean. Both LCI and UCI are calculated at the established CL level. 

Median represents the median of the experimental evaluation results. SD denotes the Standard 
Deviation of the experimental evaluation results. SD value expresses the quantity by how much the 
members of a group differ from the mean of the group. SD quantifies the amount of variation or 
dispersion of a set of data values (Bland & Altman, 1996). Variance denotes the variance. The variance 
measures how far a set of numbers are spread out from their average value. Min denotes the smallest 
value. Max denotes the largest value. Range is calculated as the difference between Max and Min; 
Range=Max-Min. Mode represents the most frequent experimental evaluation result. 
 
CoopRA: Characterization of the Experimental Evaluation Results Algorithm 
IN:IC={Ag1, Ag2,…,Agn}; Probl={Prl1, Prl2,…, Prlk}. 
Out: //Indicators of the characterization 
Mean, SEM, LCI, UCI, Median, Mode, SD, CV, Variance. 
Step 1: Obtaining of the experimental evaluation results. 
Exp:={Exp1, Exp2,…, Expk}.//Results of the Probl solving. 
Step 2: Performing an initial characterization. 
K:=|Exp|. Mode:=Mode(Exp1, Exp2,…, Expk); 
Median:=Median(Exp1, Exp2,…, Expk); Mean:=Mean(Exp1, Exp2,…, Expk); 
SEM:= SEM(Mean); 
CL:=95%;//Set the CL value, we recommend the 95%. 
@Calculates LCI, UCI. 
SD:=SD(Exp1, Exp2,…, Expk); Variance:=SD2;  
Min:=Min(Exp1, Exp2,…, Expk); Max:=Max(Exp1, Exp2,…, Expk); Range:= Max-Min; 
Step 3: Analysis of homogeneity/relative homogeneity/heterogeneity. 
CV:=100×(SD/Mean); 
If (CV[0,10)) Then 
“Exp is homogeneous;”  
ElseIf (CV[10, 30)) Then  
“Exp is relative homogeneous.”  
Else //CV30 
“Exp is heterogeneous.” 

EndIf 
Step 4: Calculates the Kurtosis and Skewness. 
Skewness:=Skewness(Exp1, Exp2,…, Expk); Kurtosis:= Kurtosis(Exp1, Exp2,…, Expk); 
@Construct the histogram for the visual interpretation of Kurtosis and Skewness;  
Step 5: Verification of the Exp data normality.  
:=0.05; //Set the significance level of the normality test. 
//Formulates the hypothesis of the normality test. 
//H0 the null hypothesis and H1 the alternative hypothesis. 
@Formulates H0 and H1; 
@Verify the Data Normality using the KS-test; 
//Let Pks the obtained KS-test result.  
If (Pks>) Then  

@Accept H0; 
“Exp is normally distributed”. 
Else 
@Accept H1; 
“Exp is NOT normally distributed.” 

Endif 
EndCoopRA 
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Skewness (Joanes & Gill, 1998) is a measure of lack of symmetry. A dataset is symmetric if 
it looks the same to the left and right of the center point. Figure 2 ilustrates the graphical 
representation of Skewness, with Figure 2(a) illustrating the negative Skewness, and Figure 2(b) 
illustrating the positive Skewness. 

 
Figure 2. Graphical representation of the Skewness: (a) Negative skewness and (b) Positive skewness. 

 
Kurtosis (Joanes & Gill, 1998) can be defined as the measure of whether the data are light-

tailed or heavy-tailed relative to a normal distribution. Figure 3 graphically presents the significance 
of Kurtosis. Data sets with high kurtosis tend to have heavy tails (outliers). Data sets with low 
kurtosis tend to have light tails (lack of outliers).  

 

 
Figure 3. Graphical representation of the kurtosis. 

 
It is useful to be considered the histogram as a very useful graphical technique for visual 

interpretation (Pearson, 1895). The humans and computing systems have different strengths and 
weakness comparatively with each other. From human point of view, easier versus the computing 
systems is the taking of some decisions based on visual interpretation. Among others, a histogram is 
useful for showing the skewness and kurtosis of a studied experimental evaluation data set. 

The Coefficient of Variation (CV) (Everitt, 1998) if is expressed in percentage (%) is 
calculated as CV=100×(SD/Mean). The coefficient of variation is appropriate for the analysing the 
homogeneity/relative-homogeneity/heterogeneity of the experimental evaluation results. It can be 
considered the characterization of homogeneity/heterogeneity based on the CV value as follows: if 
CV[0%, 10%) we call the experimental evaluation data homogeneous; if CV[10%, 30%) we call 
the experimental evaluation data relative homogeneous; if CV30% we call the experimental 
evaluation data heterogeneous.  

In step 5 of the CoopRA algorithm, is described the verification of the Exp data normality. 
More specifically, it is verified if the Exp is sampled from a Gaussian population. This information 
allows the formulation of some conclusions. For this verification, we used the One-Sample 
Kolmogorov-Smirnov test (KS-test) (Massey, 1951; Miller, 1956; Marsaglia, Tsang & Wang, 2003) 
that is one of the most frequently used statistical tests in the verification of the normality. The KS-
test should be applied at an established significance level that we denote with . In statistical 
hypothesis testing, a type I error is the incorrect rejection of a true null hypothesis. In other words, 
this could be called as a "false positive" finding. Concretely  denotes the probability to make a 
type one error. We recommend in most of the cases the application of the KS-test at the =0.05 
significance level. 

We denote with H0 the Null Hypothesis, which confirm that the Exp dataset is normally 
distributed. We denote with H1 the Alternative Hypothesis, which confirms that the Exp dataset is 
NOT normally distributed. The P-value of the KS-test is denoted in the algorithm with Pks. If 
Pks> than can be concluded that H0 can be accepted, having the significance that the normality 



BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018) 
ISSN 2067-3957 
 

42 

test passed. Elsewhere if Pks, H0 must be rejected and H1 should be accepted, the passing of the 
normality assumption being failed. 

 
3. The performed case study 
3.1. Travelling Salesman Problem definition 
Travelling Salesman Problem (TSP) was formulated in the 1800s by William Hamilton and 

Thomas Kirkman. TSP can be enounced as follows (Dorigo, 1997; Bernardino & Paias, 2018; Bao, 
Liu, Yu, & Li, 2017): given M nodes (cities) that form a directed graph, a salesman starts from a 
given node, he/she must visit each node exactly once and then return to the starting position (node). 
The salesman would like to choose the route that minimizes the total travelled distance. TSP is one 
of the most well-known NP-hard problems. Given n the number of cities to be visited, the total 
number of possible routes covering all cities can be given as a set of feasible solutions of the TSP 
calculated as (n-1)!/2. 

The TSP has several real-life applications, like: drilling of printed circuit boards (Grötschel, 
Jünger & Reinelt, 1991), overhauling gas turbine engines (Plante, Lowe, & Chandrasekaran, 1987), 
X-Ray crystallography (Bland & Shallcross, 1989), computer wiring (Lenstra, & Rinnooy Kan, 
1974), and vehicle routing (Ratliff & Rosenthal, 1983). 
 

3.2. CMASs that operate like natural ants 
Dorigo (Dorigo, Maniezzo, & Colorni, 1991; Colorni, Dorigo, & Maniezzo, 1991; Dorigo, 

1992) proposed first the problem-solving based on simple computing agents that mimic the behavior 
of natural ants in searching for food. In an Ant System (AS), initially, each agent (artificial ant) is 
placed on some randomly chosen node of the graph. A node represents a city in case of the TSP. An 
agent k currently at node i chooses to move to node j by applying the following probabilistic 
transition rule:  

        (1)

 

After each agent completes its tour, the pheromone amount on each path will be adjusted as 
follows: 

        

(2) 

 
        

  (3) 

       

(4) 

, α, and β are adjustable parameters.  is the evaporation factor. In different 
implementations,  value (0,1). α and β control the relative weights of the heuristic visibility and 
the pheromone trail. Q denotes an arbitrary constant. Very frequently Q value is set to 1. dr,z 
represents the distance between the nodes r and z. rz (rz=1/dr,z) stands for the heuristic visibility of 
the edge (r,z). The number of agents is denoted by m. Lw stands for the length of the tour performed 
by the agent w (w[1,m]). 

The agents’ members of such a studied system have a reactive architecture. They operate in 
an environment represented by a graph of connected nodes. They are able to move in the 
environment from node to node during a problem-solving. Many of the multiagent systems that 
operate by mimicking the natural ants are considered intelligent in the scientific literature. They are 
considered to have what can be called as Swarm Intelligence (SI). The expression of SI was 
introduced by Gerardo Beni and Jing Wang (Beni & Wang, 1993). There are many studies (see for 
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example Chatterjee et al., 2017) focused on problem-solving using different types of swarm 
systems. The intelligence of cooperative multiagent systems that mimic by their operation the 
natural ants, frequently, is considered based on the analogy to the intelligence level at the colony of 
natural ants and the ability of very difficult problem solving (for example, there is solved an NP-
hard problem). Figure 4 illustrates an intelligent task solving by some ants. 

 

 
 

Figure 4. Intelligent cooperative natural ants [http://sciencenordic.com/ants-make-medicine-out-tree-sap-
and-fungi accessed on 27.03.2018] 

 
3.3. Operation of the studied CMAS 
The first modified version of the AS consisted in the Ant Colony System (ACS). The Ant 

Colony System was introduced by Dorigo and Gambardella (1997). Min-max Ant System (MMAS) 
was proposed by Stützle and Hoos (2000). MMAS was applied for different real-life problems 
solving (Stützle & Hoos 2000; Prakasam & Savarimuthu, 2016). 

There are developed different applications of MMAS for different real-life problems solving 
(Stützle & Hoos 2000; Prakasam & Savarimuthu, 2016).  

IC used in this case study operated similarly as a MMAS. MMAS differs from the 
conventional AS based on different points of view. An MMAS give dynamically evolving bounds on 
the pheromone trail intensities. The pheromone intensity on all the paths is always within a specified 
limit of the path with the greatest pheromone intensity. All the possible paths have permanently a 
non-trivial probability of being selected. This approach allows a wider exploration of the search 
space. There are used lower and upper pheromone bounds to ensure that all of the pheromone 
intensities are between these two bounds. The solution construction is according to (1). There are 
minimal and maximal pheromone limits to the quantity of pheromone on the paths between nodes, 
denoted as τmin and τmax. The evaporation is expressed as (5). Equation (6) denotes the pheromone 
update based on the selected agent's round trip. 

 

min( ) max((1 ) ( ), )ij ijt t                                                                                                         (5) 

max( 1) min( ( ) ( ), )bs
ij ij ijt t t                                                                                                    (6) 

There are used the following notations. ij
bs(t)=Q/Lsel if the path ijTsel, Tsel is the selected 

best to date agent's round trip, Lsel is the length of the performed trip. In the performed experiments 
we have initialized τ0=1/NumberOfCities. As another possibility for τ0 initialization that could be 
applied we mention τ0=τmax. The most appropriate approach for initialization could not be calculated 
theoretically, it must be established experimentally. 

 
3.4. The performed experimental evaluation 
There were performed 18 experimental evaluations, Probl={Prl1, Prl2,…, Prl18}, using a 

computing system with I7-4720HQ processor and 8 GB Ram memory. It was considered the TSP 
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solving with NumberOfCities=90. The parameters values were established experimentally, as 
follows: MaxTests(NumberEpochs)=50, α=1.6, β=1.5, =0.28, m=10. 

Figure 5 illustrates graphically the obtained experimental evaluation results. Table 1 depicts 
the obtained experimental evaluation results. Figure 6 shows graphically the epochs in case of each 
problem-solving when is obtained the global-best solution during the search for the problem-
solution. 

 

  
Figure 5. The obtained experimental evaluation 

data 
 

Figure 6. Number of epochs for the obtaining of the 
solution 

Table 1. The obtained experimental evaluation data 
BestToDate Epoch BestToDate Epoch 
1257 15 1241  28 
1286 13 1317 20 
1134 11 1342 15 
1159 18 1260 16 
1456 27 1309 36 
1211 35 1291 17 
1330 25 1088 14 
1218 15 1228 11 
1268 15 1298 14 

 
Table 2 presents the results obtained by applying the proposed CoopRA algorithm. The mode 

value has not been obtained based on the fact that each experimental evaluation value appeared a 
single time. Figure 7 represents the histogram created based on the best-to-date-data. Among others, 
it was created in order to make a visual appreciation of the Kurtosis and Skewness.  

 
Table 2. Results obtained by applying CoopRA 

Indicator  Value 
Median/Mode 1264/NA 
SD/Variance 84.03/7061.5 
Mean/SEM 1260.72/19.8 
CL, [LCI, UCI] 95%, [1218.9, 1302.5] 
CV/CV interpretation 6.67/Homogeneose 
Kurtosis/Skewness 1.1/0.02 
Min/Max/Range/Count 1088/1456/368/18 
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 Figure 7. Histogram of the BestToDate 

 
For the appreciation of the data normality, we considered the visual interpretation of Figure 7 

and the interpretation of the KS-test result. It was considered the application of the KS-test at the 
=0.05 significance level. For the KS-test result, it was obtained the value of KS=0.1112 and the 
Pks>0.1 (P value of the KS-test). According to step 5 of the algorithm, based on the fact that Pks>, 
can be concluded that H0 can be accepted. This has the meaning that Exp is normally distributed. 
The obtained CV value was 6.67, according to the Step 3 of the algorithm, CV<10 indicating a 
homogeneous experimental evaluation data. 

 
4. Conclusions 
Cooperative multiagent systems, in many cases, outperform other systems, like the agents 

that operate individually, in different computational hard problems solving. Based on this fact they 
can be successfully applied for a large variety of real-life problems solving. Difficulties in the 
computing problem solving could appear based on fact that they are NP-hard, solving encounter 
different types of challenges such as: incomplete description, the description contains erroneous 
data, etc. 

In case of experimental evaluation of many cooperative multiagent systems, there are missed 
some calculus that could allow the formulation of different useful conclusions related to the 
performance. Based on this motivation, we propose an algorithm called Characterization of the 
Experimental Evaluation Results (CoopRA). Our proposal is useful for a deeper analysis of the 
cooperative multiagent systems experimental evaluation results than other approaches. This analysis 
could lead to the possibility of a formulation of more accurate decisions related to the problem-
solving performance mostly in case of CMAS that have a heuristic problem-solving behaviour. For 
example, we mention a swarm of mobile robotic agents specialized in exploring an unknown place 
of environment. Different runnings on the same problem solving could lead to different 
experimental evaluation results.   

For the validation of the CoopRA algorithm, we performed an illustrative experimental case 
study. It was considered the Travelling Salesman Problem solving by a cooperative multiagent 
system composed of simple reactive agents that mimic the operation of natural ants in search of 
food. TSP is one of the most intensely studied NP-hard problems, which has applications for many 
real-life problems solving. 

The proposed algorithm for characterization of a CMAS is universal. It is not restricted to a 
specific type of cooperating multiagent system, or a specific type of problem-solving. As examples 
of possible applications we mention: cooperative robotic agents specialized in collecting objects in 
the environment or cooperative swarms of agent-based drones specialized in delivering goods to 
clients. 
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The future works will consist in the study if this characterization could be extended in order 
to make a deeper characterization of the experimental evaluation results such that it allows 
performing more precise characterization of a CMAS performance. One of the studied direction will 
consists in the analysing of the possibility to make a characterization of the central performance 
tendency. For this purpose, we intend to design an algorithm that will be based on some specific 
calculus. 
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