

74

An Exploratory Goal-Based Modeling of Optimized Collision Avoidance Action
Selection in Autonomous Vehicles

Rabia Rauf

Mirpur University of Science and Technology
 College Rd, New Mirpur City, Azad Jammu and Kashmir 10250

Phone: +92 58279 61037
rabia.csit@must.edu.pk

Faisal Riaz
Mirpur University of Science and Technology

 College Rd, New Mirpur City, Azad Jammu and Kashmir 10250
Phone: +92 58279 61037

pakistanfaisal.riaz@must.edu.pk

Saeed Ahmeed
Mirpur University of Science and Technology

 College Rd, New Mirpur City, Azad Jammu and Kashmir 10250
Phone: +92 58279 61037

saeed.ntc@must.edu.pk

Adnan Sohail
IQRA University

Karachi, Sindh, Pakistan; Residential
Phone: +92-21-35310816, 35310826

adnan.sohail@iqraisb.edu.pk

Samia Abid
Mirpur University of Science and Technology

 College Rd, New Mirpur City, Azad Jammu and Kashmir 10250
Phone: +92 58279 61037
samia.shah355@gmail.com

Saeeda Kouser
Mirpur University of Science and Technology

 College Rd, New Mirpur City, Azad Jammu and Kashmir 10250
Phone: +92 58279 61037
saeeeda.csit@must.edu.pk

Asma Jabeen
Allama Iqbal Open University

Ashfaq Ahmed Rd, H-8/2 H 8/2 H-8, Islamabad, Islamabad Capital Territory 44000, Pakistan
Phone: +92 51 111 112 468
asma_jabeenajk@yahoo.com

Somyyia Akram
International Islamic University

H-10, Islamabad, Islamabad Capital Territory 44000, Pakistan
Phone: +92 51 9257988

somyyia@hotmail.com

Abstract
The collision-free path planning is crucial for an autonomous vehicle. It saves life and helps

to complete the task in time. The computational intelligence mimics human intelligence and solves
these types of problems in which conventional techniques fail to provide optimal solutions. In
literature, computational intelligence techniques except evolutionary techniques have not been
utilized for land vehicles. In this regard, we employ clonal selection algorithms for collision
avoidance in an autonomous vehicle. To check the effectiveness of our proposed scheme, we

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

75

compare the performance of the clonal selection algorithm with the genetic algorithm. The results
show that the clonal selection algorithm performs better than the genetic algorithm in terms of
computation time and also avoids accident within the required time to avoidance.

Keywords: Collision Avoidance; Clonal Selection Algorithm; Agent Design.

1. Introduction
Casualties, injuries, and economic losses are the bi-product of road collisions. According to

(Zhang et al., 2016), the rate of cranial casualties is very high in road accidents. Mostly young people
become a victim of roadside injuries in urban areas (Koopmans, et al. 2015). In Australia, the annual
cost of road traffic accident is $17b (Connelly and Supangan 2006). These accidents are mainly
caused by humans. Hence, these collisions can be avoided by replacing humen with the autonomous
vehicles (AVs). An AV can affect road safety in dense traffic (Fagnant and Kockelman 2015). In
(Baskar, et al. 2011), it has been stated that the AVs can sense their surrounding environment,
communicate with other vehicles and roadside infrastructure to get precise information and hence
can avoid a collision. Due to their sensing ability, AVs can detect and track the obstacles to avoid
collision The number of casualties can be further decreased by proper collision-free path planning
(Liang, et al. 2015).

In literature, computational intelligence (CI) has been explored for better collison free path
planning. Raiz et al. (Riaz, et al. 2015) have used the genetic algorithm (GA) for collision avoidance
in AVs. In (Alejo, et al. 2013), particle swarm optimization technique has been used to plan a
collision free path for autonomous unmanned aerial vehicles. In a research work, a fuzzy logic based
collision avoidance steering controller has been presented for an autonomous surface vehicle (Hodge
and Trabia 1999). CI-based algorithms have been used for underwater and unmanned arial vehicles.
A very few researchers have used CI-based algorithms for path planning in land AVs. The purpose
of our research work is to model CABC (Cognitive agent based computing) goal-based agent for
accident avoidance. Agent-based modeling (ABM) and complex networks (CN) are two popular
modeling tools for the understanding complex adaptive system (CAS). A unified framework known
as CABC combining these two modeling paradigms was for the better understanding of CAS (Niazi
and Hussain 2012). Hence, we justify the need for efficient optimization algorithm to perform
efficient collision avoidance. The collision avoidance depends on a number of events as shown in
figure 1. To avoid collision, a driver should be timely aware of risk, get alert on the life-threatening
situation, timely decide and perform actions to avoid a collision.

Figure 1. A time line for collision avoidance

To address the above mentioned problems, we have proposed goal based AV which follows

the timeline for collision avoidance as in figure 2. The main goal of AV is safety. Our goal-based
agent observes world state. On life-threatening situation run a clonal selection algorithm to achieve
safety goal. The clonal selection algorithm timely provides optimal actions to avoid a collision. Our
agent communicates these actions to the motor model to avoid a collision.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

76

Figure 2. Time series line of collision avoidance in GBAV

Contribution: The contributions of this paper are as follows:
 First of all, we have implemented genetic algorithm and clonal selection algorithm for three

types of congestions named as low, average and high congestions which has not been taken into
account in [7].

 Secondly, we have employed exploratory agent-based modeling level of CABC framework to
model and implement a clonal selection algorithm to make an efficient collision avoidance
decision making for the AVs.

The rest of the paper is organized as follows. Section 2 elaborates the research methodology.

The literature review is discussed in Section 3. The proposed solution is given in the 4th Section.
Section 5 and 6 covers the algorithms and the UML design. The simulation results are given in
Section 7. While, Section 8 concludes the work.

2. Method
The detailed literature review of the computational algorithm has been performed to avoid

collision in AVs. Later, we design the architecture of the goal-based agent. Moreover, the UML
design for the goal-based agent has been provided for the AV. The simulations are performed in C#.
To evaluate the performance of the proposed scheme, the results of the clonal selection algorithm
(CSA) are compared with GA. Finally, the conclusions are drawn from the observation of results.

Figure 3. The Proposed Methodology

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

77

3. Literature Review
During the last couple of decades, the researchers from robotics and automotive engineering

have done a lot of research to avoid collision between AVs. We categorize the literature review into
two main threads. In the first thread, we discuss the application of GA for a collision free path
planning. In this regard, Ahmed et al. (Ahmed and Deb 2013) have proposed an evolutionary multi-
objective optimization (EMO) algorithm for multi-objective collision free path planning of an AV.
The primary objective of the proposed path planning technique is to avoid collision between vehicles
in the shortest path while the secondary objective is the smooth path. The smooth path objective
helps in making decision when there is more than one better solution. EMO is the modification of
multi-objective NSGA-II algorithm. For the path planning, a three-path representation scheme
named as binary coded, mixed code and integer code has been applied. The performance of EMO
has been compared with simple GA in a difference scenario. The performance of GA decreases as
the number of obstacles increases. The authors noticed that EMO performs well in dense obstacle
environment with multiple objectives. The results show that the proposed algorithm performs
efficiently and robustly in 90% dense grid. The multi-objective evolutionary technique with the
integer code scheme can be useful for non-monotonic path planning in the real world. Mahmoud
Zadeh and A. Yazdani (MahmoudZadeh, et al. 2016) have proposed a differential evolutionary (DE)
algorithm for collision-free path planning in underwater environments. The proposed Differential
Evolutionary (DE) algorithm is the improved version GA as it allows to set floating point as a
parameter. Experiment analysis proved that DE provides collison free path in less computational
time for autonomous underwater vehicles (AUV) with kinematic variables. Riaz et al. (Riaz, et al.
2015), have employed the GA to avoid collision between AVs. A chromosome consists of four genes
named as speed, brake, angle, and time of avoidance (TOA). To initiate the value of genes the
following distance values have been given to the algorithm such as rear end distance, forward end
distance, left and right distances between vehicles. For fitness calculation, the fitness of each gene is
subtracted from the desired solution. They have used Roulette Wheel selection method to select the
fittest gene. The crossover and mutation operations have been used to produce offsprings which
represent the fittest solution of the problem. For UAVs, the conflict detection and resolution
technique for safe path planning has been presented by Alejo et al. (Alejo, et al. 2016). They
identified the problem that the UAVs can collide with other UAVs and static objects in the airspace.
To address this problem, the authors have employed GA which helps to resolve the conflict. They
have used distance, speed and heading as parameters for a safe waypoint. After applying crossover
and mutation, the GA selects the best collision free path for UAV. This algorithm has been used for
different wind conditions. The execution time of GA depends on various wind condition. However,
it produces an optimal collision-free path in less computational time.

While in the second thread, we discuss the application of CSA for a collision free path
planning of AVs. It has been discussed in (Lee, et al. 2007), that the clonal selection has been
applied for a smooth path selection for underwater AVs. They state that this selection method
optimizes the coefficient for proportional-integral derivative (PID) controller. This controller
intelligently controls the vehicle movement in an unpredictable water environment. A technique for
path planning of airship in three directions has been presented in (Liu, et al. 2008). For the optimal
flight and performance parameter selection of airship, the CSA has been employed by the authors.
This algorithm has been applied in three cases and provides optimal solution for flight planning in
30-50 iterations. Furthermore, the CSA has been employed for multi-combat dynamic ariel weapon-
target assignment game model (Wang, et al. 2016). The combat is divided into two parties named as
red and blue. This algorithm identifies the weapon constraints, the number of aerial combat steps,
damage probability and prediction strategies. It takes into account both the diversity and
convergence speed. To check the efficiency of the proposed scheme, it has been compared with GA.
It has been noticed that the GA fails to provide an optimal solution in 100 iterations while CSA
provides an efficient and real-time solution. Another work in (Das, et al. 2016), employs the same
algorithm for cooperative motion control of AUVs. The model of AUVs was designed on the loader

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

78

follower strategy. The leading AUV estimates the position and announces to another vehicle.
Basically, this model consists of two parts, one is the team controller while the other is the AUV
controller. The former implements the clonal selection to generate waypoints while the later
generates a possible trajectory for AUVs. To check the efficiency of this technique, its results have
been compared with other search methods named as multi-directional, stochastic approximation and
simple techniques.

4. Proposed Solution
In this section, a goal-based agent design and the formulation for action selection has been

proposed for collision-free path planning of an AV.

4.1. Goal-based agent architecture
The goal-based agent architecture has three components as shown in figure 4. It takes

different environment situations from the sensor and input them to the CSA optimizer. In order to
avoid collision, this optimizer runs the clonal selection algorithm to generate optimized action for
the motor module.

Figure 4. Agent Architecture

Components Description:
1. Sensor: It senses left, right, front rear distance from the environment.
2. CSA optimizer: It selects optimal action by running clonal selection algorithm and passes the

optimized action to the motor module.
3. Motor module: It executes the optimized action for collision avoidance.

4.2. Clonal selection and Affinity function
Initially, the population of 100 antibodies is generated. The value of antibodies is randomly

generated according to the congestion rate. We have divided road congestion into three categories
named low, average and high congestion. In order to produce a good solution, we apply affinity
function. The antibodies with the high affinity are added to the next generation. For the selection of
the best antibodies to the next generation, we use the roulette wheel selection method. Through this
method, the antibodies are selected according to their probability. While, the probability of each
antibody is calculated using equation 1:

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

79

𝑝(𝑖) =
஺(௜)

∑ ஺(௜)ಿ
ೕసభ

 (1)

Where p(i) represents the probability of each antibody while A(i) represents the affinity of

the individual antibodies in the population. After the process of selection, cloning is performed on
the selected antibodies. At last, the clones are mutated. By applying the roulette wheel there is a
chance of high-affinity antibodies to add to the next population.

4.2.1. Affinity function
Each antibody constitutes four cells named as speed, brake, angle, and time to avoidance

(TTA).
Speed:
The affinity of speed is calculated using the following equation:
Difference (d)= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑒𝑑 − 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦 (2)
Equation (2) provides the absolute value of the difference between the required speed and the

speed in the antibody. After calculating the difference, a variable ‘e’ is declared whose value is
between the ranges of (60-120) speed. When the value of speed is less than variable ‘e’ the affinity
will be calculated using equation (3)

.𝐴(𝑆) = 𝑥 ∗ ቀ
஽

௘
ቁ (3)

Where A(S) represents the affinity of speed and x is the weight of parameters in antibodies.
To provide equal weights 25 value are assigned when d>e then the following equation will be
used.

𝐴(𝑆) = 𝑥 (4)

Angle
The affinity of angle is calculated using the following equations:
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑑) = 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑖𝑛𝑛𝑒𝑟 𝑡𝑖𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 − 𝑖𝑛𝑛𝑒𝑟 𝑡𝑖𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦 (5)
In angle, consider a variable ‘n’ which should lie within the limit of the angle which is (60-

120). When ‘d’ is smaller than ‘p’ the affinity of inner tire angle is calculated using equation (6).

𝐴(𝑎𝑡ℎ𝑒) = 𝑥 ∗ ቀ
஽

௘
ቁ (6)

Otherwise, it will be calculated using equation (7).

𝐴(𝑎) = 𝑥 (7)

Break:
The affinity function for a break is zero, and one.
Difference (d) = 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑟𝑒𝑎𝑘 − 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦 (8)
When the difference is not equal to zero it will be set as 25. In case, the difference match the

required break then it will be zero.
Time to avoidance (TTA)
Difference (d)= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝑇𝐴 − 𝑇𝑇𝐴 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦 (9)
Consider a variable ‘t’ whose value can be any number within the limit (20-90). When the

value of ‘d’ is smaller than ‘t’, the affinity will be calculated as follows.

𝐴(𝑇𝑇𝐴) = 𝑥 ∗ ቀ
஽

௧
ቁ (10)

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

80

 Otherwise, it will be calculated as follows:
𝐴(𝑇𝑇𝐴) = x (11)
The value of x is 25 which represents the weight for the antibody.
Total Affinity
The total affinity is calculated by using equation (12):
[100 − [𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑠𝑝𝑒𝑒𝑑] + 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑏𝑟𝑒𝑎𝑘] + 𝐴𝑓𝑓𝑖𝑒𝑛𝑖𝑡𝑦 [𝐴𝑛𝑔𝑙𝑒] + 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑇𝑇𝐴]]]]

(12)

5. CSA for Collision Avoidance
As discussed earlier, we use CSA to get optimized actions to avoid collision. The CSA is

based on the immune system and it describes how the immune system responds to the antigen
(Burnet 1959).

Algorithm 1: Action Optimization
Set random values of Vehicle Distances front, rear, lef, and right (to
generate real-life scenario).

 IF (VehicalDis_front> VehicalDis_rear)
 Vehical_Speed=Vechical_Speed + 20.
 Vehical_Break=0.
 Else

 IF (VehicalDis_rear>20)
 Vehical_Break= 1.
 Vehical_Speed=Vechical_Speed - 20.
 Else
 Vehical_Speed=Vechical_Speed - 10.
 Vehical_Break=0;

 IF (VehicalDis_left> VehicalDis_right)
 Vehical_Angle= Vehical_Angle + 20.
 Vehical_tta= Vehical_tta+10.
 Else
 Vehical_Angle= Vehical_Angle - 20.
 Vehical_tta= Vehical_tta - 10.}

 Randomly initiate population of antibodies.
 Calculate Affinity of each element of population.
 Select elements with High Affinity.
 Perform cloning by generating copies of these.
 Mutate all copies.
 Add mutated individual to the population and reselect from mutating.
 Repeat step 20 to 25 until termination criteria meet.

6. The UML Design of Simulations:
This section covers the UML design of our simulations. First use case diagram is shown in

figure 5. It consists of five use cases. In the first use case, the agent initiates perception to interpret
the environment. After integrating the current scenario, it searches the best action from the search
space. While in the last use case, the agent forwards the optimized actions to a motor module.

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

81

Figure 5. Use case diagram of simulation

A sequence diagram is shown in figure 6 which represents the actions that are performed in

sequence. It has six modules named as sensors, goal-based AV, action selector, optimizer, controller
and motor.

Figure 6. Sequence diagram of simulation

7. Simulations and Results
This section provides a detailed discussion of the simulations and their results. However,

first we discuss the simulation environment. We have performed our simulations in C# with a
different type of road congestion. After the simulation design, we discuss the simulation parameters.
These parameters represent the cell structure of antibodies with their ranges. At the end of this
section, we provide the test case design of our methodology.

7.1. Simulation Environment
Our scheme is implemented in C# .net platform as shown in figure 7. Three different types

of congestion rates are presented as low, average and high congestion. The number of vehicles

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

82

varies on different congestion rates. After selecting the congestion rate, the simulator runs CSA and
GA against ideal discussion. The simulator gives an optimized result computed from CSA and GA.
It also computes the computation time taken by CSA and GA.

Figure 7. Simulation interface

7.2. Simulation Parameters
Our simulation is designed for motorway traffic. The antibodies in our research are divided

into four cells where each cell has a different set of values. The decision making depends on the
values of these cells. For simplicity, we assign the break value 0 and 1. The value zero means
deceleration and 1 means acceleration.

Table 1. Structure of antibody
Series Cells Range
1 Speed 60-120

2 Angle 60-120

3 Break 0-1

4 Time To Avoidance (TTA) 20_90%

7.3. Test Case Design:
We design the test cases for three types of congestions on the road. These congestions are

names as low, average and high congestion. The number of cars varies with different congestion
rates. For each scenario, we have performed 100 tests resulting in 600 tests in total. We apply CSA
and GA and compare their performance to check which algorithms performs the best.

7.4. Results
As discussed earlier, 100 test cases are designed for low, average and high congestion. To

check the performance of CSA, several scenarios are generated. These test cases run at different
speeds as shown in table 2. A number of ideal decisions are given to the simulator and the simulator
optimized them using the CSA. In table 2, ideal decisions are given for low congestion.

Table 2. Ideal decision in low congestion
Ideal test cases

 SPEED (Km/h) BREAK ANGLE TTA

1 96 1 96 72

2 87 1 86 67

3 135 0 121 88

4 128 0 133 67

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

83

5 96 1 131 83

6 84 1 97 72

7 84 1 131 83

8 90 1 129 97

9 126 0 134 90

10 84 1 82 61

Table 3. Optimized result by CSA in low congestion

 CSA optimized result

 SPEED (Km/h) BREAK ANGLE TTA

1 81 ± 17 1 ± 0 91 ± 18 62 ± 21

2 86 ± 16 1 ± 0 80 ± 18 55 ± 22

3 89 ± 15 0 ± 0 81 ± 18 54 ± 17

4 99 ± 11 0 ± 0 88 ± 14 40 ± 25

5 94 ± 16 1 ± 0 81 ± 23 52 ± 16

6 94 ± 16 1 ± 0 86 ± 21 59 ± 29

7 87 ± 16 1 ± 0 96 ± 18 55 ± 17

8 83 ± 14 1 ± 0 9 4 ± 16 48 ± 19

9 88 ± 16 0 ± 0 93 ± 17 56 ± 14

10 88 ± 16 1 ± 0 88 ± 23 52 ± 23

Table 3 shows the optimized result of CSA in case of low congestion. The test case was

performed at a maximum speed of 135 and a minimum of 84. Results in table 3 validate the
functionality of CSA by giving maximum variation in speed of 17 and minimum of 14, maximum
variation in angle is 23 and the minimum variation is 14, maximum variation is 29 and the
minimum variation is 14 in TTA. Further, table 4 provides the ideal decision for average
congestion.

Table 4. Ideal decision in average congestion
Ideal test cases

 SPEED (Km/h) BREAK ANGLE TTA

1 89 0 65 28

2 71 1 119 43

3 77 0 101 68

4 72 1 118 72

5 83 0 65 52

6 106 0 68 61

7 89 0 69 63

8 77 1 64 62

9 62 1 75 34

10 109 0 108 43

Table 5. Optimized result by CSA in average congestion

 SPEED (Km/h) BREAK ANGLE TTA

1 9.1 ± 8.1 0 ± 0 67.2 ± 6.1 28.1 ± 4.17

2 71.1 ± 6.0 1 ± 0 115 ± 8.15 41.2 ± 9

3 76.3 ± 4.52 0 ± 0 90.1 ± 5.91 67.5 ± 3.86

4 74.3 ± 5.56 1 ± 0 111.2 ± 6.64 73.5 ± 9.22

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

84

5 82.3 ± 6.6 0 ± 0 65.8 ± 3.7 51 ± 7.1

6 103 ± 4 0 ± 0 65 ± 3.4 63.6 ± 4.7

7 90.2 ± 6.4 0 ± 0 68± 8 64.9 ± 4.6

8 77.8 ± 5.8 1 ± 0 67.7 ± 5.35 65.1 ± 8.7

9 63.8 ± 4.89 1 ± 0 73.3 ± 6.4 32.1 ± 9

10 106.6 ± 5.3 0 ± 0 110 ± 5.72 41.9 ± 5.7

Table 5 shows the optimized results of CSA in case of average congestion. The test case was

performed at the maximum speed of 109 and a minimum of 62. Results in table 5 validate the
functionality of CSA by giving maximum variation in speed of 8 and a minimum of 4, maximum
variation in angle is 8.15 while the minimum variation 3.4, maximum variation 9.22 and the
minimum variation 4.1 in TTA.

Table 6. Ideal decision in high congestion

. Ideal test cases

 SPEED (Km/h) BREAK ANGLE TTA

1 57 0 87 41

2 44 1 53 15

3 83 0 90 30

4 57 0 94 33

5 99 0 84 35

6 96 0 87 47

7 99 0 82 43

8 63 0 94 43

9 84 0 81 45

10 89 0 86 30

Table 7. Optimized result by CSA in high congestion

 CSA optimized result
 SPEED (Km/h) BREAK ANGLE TTA
1 62.5 ± 3.5 0 ± 0 87 ± 7.8 40.1 ± 6.5
2 60 ± 13 1 ± 0 66.5 ± 3.5 24.5 ± 6.5
3 83.9 ± 17 0 ± 0 62.5 ± 11.6 53 ± 13
4 90 ±14 0 ± 0 81.8 ± 14 51.8 ± 20
5 89 ± 17 0 ± 0 41 ± 16 51.6 ± 27
6 83 ± 18 0 ± 0 81.7 ± 11 53.5 ± 26
7 90.9 ±13 0 ± 0 83.3 ± 15 55.7 ± 18
8 89 ± 14 0 ± 0 49.9 ± 14 47 ± 4
9 99 ±19 0 ± 0 87 ±20 44.5 ± 18.5
10 87.4 ±21 0 ± 0 82.6 ± 29 12 ± .6

Table 7 shows the optimized result of CSA in case of high congestion. Test cases were

performed at a maximum speed of 99 and a minimum of 44. Results in table 7 validate the
functionality of CSA by giving maximum variation in speed of 21 and a minimum of 3.5, maximum
variation in angle is 7.8 and minimum 3.5, maximum 27 and minimum 0.6 in TTA.

In order to check the computational time of CSA, we run both CSA and GA on core i3
processor with 4GB RAM as shown in table 8. We have observed that the CSA takes average
maximum time of 28.9 millisecond and minimum average time 14.3 milliseconds. However, GA
takes maximum average time of 85.5 millisecond and minimum average time 71.4 in case of low
congestion. In case of average congestion, CSA takes a maximum of 15.4 and a minimum of 13
milliseconds for computation. While, GA takes a maximum of 72.2 ms and minimum

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

85

computational time of 65.4ms. On the other hand, CSA takes a maximum of 18.4ms for providing
an optimized decision for collision avoidance. GA takes a maximum of 82.6ms and a minimum of
55.4ms for providing an optimal decision in high congestion.

Table 8. The computational time of CSA and GA in low, average and high congestion.

Low Congestion Average Congestion High Congestion
 Time in millisecond

Test case CSA GA

1 28.9 77.9

2 16.8 75.2

3 15.1 78.3

4 14.7 71.4

5 14.3 71.4

6 14.3 77.8

7 17.4 76.8

8 16.8 85.3

9 21.7 83.7

10 16.4 72

 Time in ms

Test
case

CSA GA

1 15.4 65.8

2 13.1 64.6

3 13.7 65.4

4 12.9 69.8

5 13.4 72.2

6 13 67.8

7 13.3 67

8 13.1 69.4

9 13.1 66.5

10 13.2 65.9

 Time in ms

Test
case

CSA

GA

1

18.4

82.6

2 14.8 74.7

3 13 56.5

4 12.6 54.9

5 12.5 54.9

6 12.4 54.9

7 12.3 56.4

8 14.8 55.7

9 12.7 54.5

10 12.2 55.4

Figure 8. Comparing CSA and GA in low congestion

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

Time comparision between CSA and GA

CSA GA

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

86

Figure 9. Comparing CSA and GA in average congestion

Figure 10. Comparing CSA and GA in high congestion

Thus, the computational time of CSA is less than the computational time of GA as shown in

the figures 8-10. Hence, CSA performs better than GA in terms of computational time.
Now, we check whether CSA avoids accident within required TTA. As shown in table 8, 9

and 10 CSA finds an optimized solution within the required TTA. GA fails to provide a solution in
the required TTA. GA provides a better solution than CSA but it fails to provide it with the
required TTA time. Thus, an accident can occur. The CSA is better than GA in terms of
computational time.

Table 9. Comparing GA and CSA in term of TTA for Low congestion

Test
case

Required TTA (ms) CSA GA

1 72 28.9 Avoided 77.9 Not avoided
2 67 16.8 Avoided 75.2 Not avoided
3 88 15.1 Avoided 78.3 Not avoided
4 67 14.7 Avoided 71.4 Not avoided
5 83 14.3 Avoided 71.4 Avoided
6 72 14.3 Avoided 77.8 Not avoided
7 83 17.4 Avoided 76.8 Avoided

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Time comparision between CSA and GA

CSA GA

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

Time comparision between CSA and GA

CSA GA

R. Rauf, F. Riaz, S. Ahmeed, A. Sohail, S. Abid, S. Kouser, A. Jabeen, S. Akram - An Exploratory Goal-Based Modeling of
Optimized Collision Avoidance Action Selection in Autonomous Vehicles

87

8 97 16.8 Avoided 85.3 Avoided
9 90 21.7 Avoided 83.7 Avoided
10 61 16.4 Avoided 72 Not avoided

Table 10. Comparing GA and CSA in term of TTA for average congestion

Test case Required TTA (ms) CSA GA
1 28 15.4 Avoided 65.8 Not avoided
2 43 13.1 Avoided 64.6 Not avoided
3 68 13.7 Avoided 65.4 Not avoided
4 72 12.9 Avoided 69.8 Not avoided
5 52 13.4 Avoided 72.2 Not avoided
6 61 13 Avoided 67.8 Not avoided
7 63 13.3 Avoided 69.4 Not avoided
8 62 13.1 Avoided 69.4 Not avoided
9 34 13.1 Avoided 66.5 Not avoided
10 43 13.2 Avoided 65.9 Not avoided

Table 11. Comparing GA and CSA in term of TTA for High congestion

Test case Required TTA (ms) CSA GA
1 41 18.4 Avoided 82.6 Not avoided
2 15 14.8 Avoided 74.7 Not avoided
3 30 13 Avoided 56.5 Not avoided
4 33 12.6 Avoided 54.9 Not avoided
5 35 12.5 Avoided 54.9 Not avoided
6 47 12.4 Avoided 54.9 Not avoided
7 43 12.3 Avoided 56.4 Not avoided
8 43 14.8 Avoided 55.7 Not avoided
9 45 12.7 Avoided 54.5 Not avoided
10 30 12.2 Avoided 55.4 Not avoided

In the aforementioned discussion, we have examined the performance of CSA and GA.

From the results, we conclude that the clonal selection algorithm is less robust than GA. By
comparison, it is clear that the standard deviation of CSA is higher than the standard deviation of
GA. But CSA beat GA in computation time. We have only examined CSA with GA, because to
the best of our knowledge, CI-based algorithms have not been employed for collision avoidance in a
land vehicle. There may be a possibility that other CI-based algorithms will perform better than GA
or we can also create a hybrid algorithm which can combine the best features of CI-based
algorithms to timely avoid collision with better-optimized results. In the future, we will extend our
research work by hard wiring the CSA to check its performance in the real life. We also explore
other CI-based algorithms and try to negotiate why their application has not been done for collision
avoidance in the land vehicles.

8. Conclusion
From an extensive literature review of computational intelligence CI, we found that very

few researchers use CI-based algorithm for land autonomous vehicles. We have implemented CI
based clonal selection algorithm with a CABC framework for collision avoidance in the AVs. We
have implemented CSA and GA in different types of congestions. To validate the performance of
CSA it is compared with GA. GA provides better results than CSA. However, the computation
time of CSA is less than the GA. Moreover, CSA performed better results than GA in terms of TTA
because CSA has producesd optimal results with the required TTA. Whereas, GA failed to provide

BRAIN – Broad Research in Artificial Intelligence and Neuroscience
Volume 10, Issue 3 (September, 2019), ISSN 2067-3957

88

optimal results within the required TTA. Thus, we conclude that CSA provides the required action
with TTA and avoids a collsion.

References
Ahmed, F., & Deb, K. (2012). Multi-objective optimal path planning using elitist non-dominated

sorting genetic algorithms. Soft Computing, 17(7), 1283-1299.
Alejo, D., Cobano, J. A., Heredia, G., & Ollero, A. (2013). Particle swarm optimization for

collision-free 4d trajectory planning in unmanned aerial vehicles. International Conference
on Unmanned Aircraft Systems, 298-307.

Alejo, D., Cobano, J. A., Heredia, G., & Ollero, A. (2016). An efficient method for multi-UAV
conflict detection and resolution under uncertainties. Second Iberian Robotics
Conference, 635-647.

Baskar, L. D., De Schutter, B., Hellendoorn, J., & Papp, Z. (2011). Traffic control and intelligent
vehicle highway systems: a survey. IET Intelligent Transport Systems, 5(1), 38-52.

Connelly, L. B., & Supangan, R. (2006). The economic costs of road traffic crashes: Australia,
states and territories. Accident Analysis & Prevention, 38(6), 1087-1093.

Emmanuel, I. (2017). Fuzzy Logic-Based Control for Autonomous Vehicle: A
Survey. International Journal of Education and Management Engineering, 7(2), 41.

Hodge, N. E., & Trabia, M. B. (1999). Steering fuzzy logic controller for an autonomous vehicle.
In Proceedings 1999 IEEE International Conference on Robotics and Automation, 3, 2482-
2488.

Koopmans, J., Friedman, L., Kwon, S., & Sheehan, K. (2015). Urban crash-related child pedestrian
injury incidence and characteristics associated with injury severity. Accident Analysis &
Prevention, 77, 127-136.

Lee, J., Roh, M., Lee, J., & Lee, D. (2007). Clonal selection algorithms for 6-DOF PID control of
autonomous underwater vehicles. In International Conference on Artificial Immune
Systems (pp. 182-190). Springer, Berlin, Heidelberg.

Xin, Y., Liang, H., Mei, T., Huang, R., Chen, J., Zhao, P., ... & Wu, Y. (2015). A New Dynamic
obstacle Collision Avoidance System for Autonomous Vehicles. International Journal of
Robotics & Automation, 30(3), 278-288.

Liu, Y., Zhang, Y., & Hu, Y. (2008, April). Optimal path planning for autonomous airship based on
clonal selection and direct collocation algorithm. In 2008 IEEE International Conference on
Networking, Sensing and Control (pp. 1828-1832).

MahmoudZadeh, S., Powers, D., Sammut, K., & Yazdani, A. M. (2016). Differential evolution for
efficient AUV path planning in time variant uncertain underwater environment. Robotics
(cs. RO).

Niazi, M. A., & Hussain, A. (2012). Cognitive agent-based computing-I: a unified framework for
modeling complex adaptive systems using agent-based & complex network-based methods.
Springer Science & Business Media.

Riaz, F., Niazi, M. A., Sajid, M., Amin, S., Ratyal, N. I., & Butt, F. (2015). An efficient collision
avoidance scheme for autonomous vehicles using genetic algorithm. J Appl Environ Biol
Sci, 5(8), 70-76.

Schultz, A., & Grefenstette, J. (1992, August). Using a genetic algorithm to learn behaviors for
autonomous vehicles. In Guidance, Navigation and Control Conference (p. 4463).

Wang, Y., Zhang, W., & Li, Y. (2016, July). An efficient clonal selection lgorithm to solve
dynamicweapon-target assignment game model in UAV cooperative aerial combat. In 2016
35th Chinese Control Conference (CCC) (pp. 9578-9581).

