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Abstract 
The collision-free path planning is crucial for an autonomous vehicle. It saves life and helps 

to complete the task in time. The computational intelligence mimics human intelligence and solves 
these types of problems in which conventional techniques fail to provide optimal solutions. In 
literature, computational intelligence techniques except evolutionary techniques have not been 
utilized for land vehicles. In this regard, we employ clonal selection algorithms for collision 
avoidance in an autonomous vehicle.  To check the effectiveness of our proposed scheme, we 
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compare the performance of the clonal selection algorithm with the genetic algorithm. The results 
show that the clonal selection algorithm performs better than the genetic algorithm in terms of 
computation time and also avoids accident within the required time to avoidance. 

 
Keywords: Collision Avoidance; Clonal Selection Algorithm; Agent Design. 
 
1. Introduction 
Casualties, injuries, and economic losses are the bi-product of road collisions. According to 

(Zhang et al., 2016), the rate of cranial casualties is very high in road accidents. Mostly young people 
become a victim of roadside injuries in urban areas (Koopmans, et al. 2015). In Australia, the annual 
cost of road traffic accident is $17b (Connelly and Supangan 2006). These accidents are mainly 
caused by humans. Hence, these collisions can be avoided by replacing humen with the autonomous 
vehicles (AVs). An AV can affect road safety in dense traffic (Fagnant and Kockelman 2015). In 
(Baskar, et al. 2011), it has been stated that the AVs can sense their surrounding environment, 
communicate with other vehicles and roadside infrastructure to get precise information and hence 
can avoid a collision. Due to their sensing ability,  AVs can detect and track the obstacles to avoid 
collision The number of casualties can be further decreased by proper collision-free path planning 
(Liang, et al. 2015). 

In literature, computational intelligence (CI) has been explored for better collison free path 
planning. Raiz et al. (Riaz, et al. 2015) have used the genetic algorithm (GA) for collision avoidance 
in AVs. In (Alejo, et al. 2013), particle swarm optimization technique has been used to plan a 
collision free path for autonomous unmanned aerial vehicles. In a research work, a fuzzy logic based 
collision avoidance steering controller has been presented for an autonomous surface vehicle (Hodge 
and Trabia 1999). CI-based algorithms have been used for underwater and unmanned arial vehicles. 
A very few researchers have used CI-based algorithms for path planning in land AVs. The purpose 
of our research work is to model CABC (Cognitive agent based computing) goal-based agent for 
accident avoidance. Agent-based modeling (ABM) and complex networks (CN) are two popular 
modeling tools for the understanding complex adaptive system (CAS).  A unified framework known 
as CABC combining these two modeling paradigms was for the better understanding of CAS (Niazi 
and Hussain 2012). Hence, we justify the need for efficient optimization algorithm to perform 
efficient collision avoidance. The collision avoidance depends on a number of events as shown in 
figure 1. To avoid collision, a  driver should be timely aware of risk, get alert on the life-threatening 
situation, timely decide and perform actions to avoid a collision. 

 

 
Figure 1. A time line for collision avoidance 

 
To address the above mentioned problems, we have proposed goal based AV which follows 

the timeline for collision avoidance as in figure 2.  The main goal of AV is safety. Our goal-based 
agent observes world state. On life-threatening situation run a clonal selection algorithm to achieve 
safety goal.  The clonal selection algorithm timely provides optimal actions to avoid a collision. Our 
agent communicates these actions to the motor model to avoid a collision.   
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Figure 2. Time series line of collision avoidance in GBAV 

 
Contribution: The contributions of this paper are as follows: 
 First of all, we have implemented genetic algorithm and clonal selection algorithm for three 

types of congestions named as low, average and high congestions which has not been taken into 
account in [7].  

 Secondly, we have employed exploratory agent-based modeling level of CABC framework to 
model and implement a clonal selection algorithm to make an efficient collision avoidance 
decision making for the AVs. 

 
The rest of the paper is organized as follows. Section 2 elaborates the research methodology. 

The literature review is discussed in Section 3. The proposed solution is given in the 4th Section. 
Section 5 and 6 covers the algorithms and the UML design. The simulation results  are given in 
Section 7. While, Section 8 concludes the work. 

 
2. Method 
The detailed literature review of the computational algorithm has been performed to avoid 

collision in AVs. Later, we design the architecture of the goal-based agent. Moreover, the UML 
design for the goal-based agent has been provided for the AV. The simulations are performed in C#. 
To evaluate the performance of the proposed scheme, the results of the clonal selection algorithm 
(CSA) are compared with GA. Finally, the conclusions are drawn from the observation of results. 

 

 
Figure 3. The Proposed Methodology 
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3. Literature Review  
During the last couple of decades, the researchers from robotics and automotive engineering 

have done a lot of research to avoid collision between AVs. We categorize the literature review into 
two main threads. In the first thread, we discuss the application of GA for a collision free path 
planning. In this regard, Ahmed et al. (Ahmed and Deb 2013) have proposed an evolutionary multi-
objective optimization (EMO) algorithm for multi-objective collision free path planning of an AV. 
The primary objective of the proposed path planning technique is to avoid collision between vehicles 
in the shortest path while the secondary objective is the smooth path. The smooth path objective 
helps in making decision when there is more than one better solution. EMO is the modification of 
multi-objective NSGA-II algorithm. For the path planning, a three-path representation scheme 
named as binary coded, mixed code and integer code has been applied. The performance of EMO 
has been compared with simple GA in a difference scenario. The performance of GA decreases as 
the number of obstacles increases. The authors noticed that EMO performs well in dense obstacle 
environment with multiple objectives. The results show that the proposed algorithm performs 
efficiently and robustly in 90% dense grid. The multi-objective evolutionary technique with the 
integer code scheme can be useful for non-monotonic path planning in the real world. Mahmoud 
Zadeh and A. Yazdani (MahmoudZadeh, et al. 2016) have proposed a differential evolutionary (DE) 
algorithm for collision-free path planning in underwater environments. The proposed Differential 
Evolutionary (DE) algorithm is the improved version GA as it allows to set floating point as a 
parameter. Experiment analysis proved that DE provides collison free path in less computational 
time for autonomous underwater vehicles (AUV) with kinematic variables. Riaz et al. (Riaz, et al. 
2015), have employed the GA to avoid collision between AVs. A chromosome consists of four genes 
named as speed, brake, angle, and time of avoidance (TOA). To initiate the value of genes the 
following distance values have been given to the algorithm such as rear end distance, forward end 
distance, left and right distances between vehicles. For fitness calculation, the fitness of each gene is 
subtracted from the desired solution. They have used Roulette Wheel selection method to select the 
fittest gene. The crossover and mutation operations have been used to produce offsprings which 
represent the fittest solution of the problem. For UAVs, the conflict detection and resolution 
technique for safe path planning has been presented by Alejo et al. (Alejo, et al. 2016). They 
identified the problem that the UAVs can collide with other UAVs and static objects in the airspace. 
To address this problem, the authors have employed GA which helps to resolve the conflict. They 
have used distance, speed and heading as parameters for a safe waypoint. After applying crossover 
and mutation, the GA selects the best collision free path for UAV. This algorithm has been used for 
different wind conditions. The execution time of GA depends on various wind condition. However, 
it produces an optimal collision-free path in less computational time. 

While in the second thread, we discuss the application of CSA for a collision free path 
planning of AVs. It has been discussed in (Lee, et al. 2007), that the clonal selection has been 
applied for a smooth path selection for underwater AVs. They state that this selection method 
optimizes the coefficient for proportional-integral derivative (PID) controller. This controller 
intelligently controls the vehicle movement in an unpredictable water environment. A technique for 
path planning of airship in three directions has been presented in (Liu, et al. 2008). For the optimal 
flight and performance parameter selection of airship, the CSA has been employed by the authors. 
This algorithm has been applied in three cases and provides optimal solution for flight planning in 
30-50 iterations. Furthermore, the CSA has been employed for multi-combat dynamic ariel weapon-
target assignment game model (Wang, et al. 2016). The combat is divided into two parties named as 
red and blue. This algorithm identifies the weapon constraints, the number of aerial combat steps, 
damage probability  and prediction strategies. It takes into account both the diversity and 
convergence speed. To check the efficiency of the proposed scheme, it has been compared with GA. 
It has been noticed that the GA fails to provide an optimal solution in 100 iterations while CSA 
provides an efficient and real-time solution. Another work in (Das, et al. 2016), employs the same 
algorithm for cooperative motion control of AUVs. The model of AUVs was designed on the loader 
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follower strategy. The leading AUV estimates the position and announces to another vehicle. 
Basically, this model consists of two parts, one is the team controller while the other is the AUV 
controller.  The former implements the clonal selection to generate waypoints while the later 
generates a possible trajectory for AUVs. To check the efficiency of this technique, its results have 
been compared with other search methods named as multi-directional, stochastic approximation and 
simple techniques.  

 
4. Proposed Solution 
In this section, a goal-based agent design and the formulation for action selection has been 

proposed for collision-free path planning of an AV. 
 
4.1. Goal-based agent architecture 
The goal-based agent architecture has three components as shown in figure 4. It takes 

different environment situations from the sensor and input them to the CSA optimizer. In order to 
avoid collision, this optimizer runs the clonal selection algorithm to generate optimized action for 
the motor module. 

 
Figure 4. Agent Architecture 

 
Components Description: 
1. Sensor: It senses left, right, front rear distance from the environment. 
2. CSA optimizer: It selects optimal action by running clonal selection algorithm and passes the  

optimized action to the motor module. 
3. Motor module: It executes the optimized action for collision avoidance. 
 

4.2. Clonal selection and Affinity function 
Initially, the population of 100 antibodies is generated. The value of antibodies is randomly 

generated according to the congestion rate. We have divided road congestion into three categories 
named low, average and high congestion. In order to produce a good solution, we apply affinity 
function. The antibodies with the high affinity are added to the next generation. For the selection of 
the best antibodies to the next generation, we use the roulette wheel selection method. Through this 
method, the antibodies are selected according to their probability. While, the probability of each 
antibody is calculated using equation 1: 
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𝑝(𝑖) =  
஺(௜)

∑ ஺(௜)ಿ
ೕసభ

      (1) 

 
Where p(i) represents the probability of each antibody while A(i) represents the affinity of 

the individual antibodies in the population. After the process of selection, cloning is performed on 
the selected antibodies. At last, the clones are mutated. By applying the roulette wheel there is a 
chance of high-affinity antibodies to add to the next population. 

 
4.2.1. Affinity function 
Each antibody constitutes four cells named as speed, brake, angle, and time to avoidance 

(TTA). 
Speed: 
The affinity of speed is calculated using the following equation: 
Difference (d)= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑒𝑑 − 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦      (2) 
Equation (2) provides the absolute value of the difference between the required speed and the 

speed in the antibody. After calculating the difference, a variable ‘e’ is declared whose value is 
between the ranges of (60-120) speed. When the value of speed is less than variable ‘e’ the affinity 
will be calculated using equation (3) 

 

.𝐴(𝑆) = 𝑥 ∗ ቀ
஽

௘
ቁ     (3) 

 
Where A(S) represents the affinity of speed and x is the weight of parameters in antibodies. 
To provide equal weights 25 value are assigned when d>e then the following equation will be 
used.   
 
𝐴(𝑆) = 𝑥       (4) 

 
Angle 
The affinity of angle is calculated using the following equations: 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑑) = 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑖𝑛𝑛𝑒𝑟 𝑡𝑖𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 −  𝑖𝑛𝑛𝑒𝑟 𝑡𝑖𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦   (5) 
In angle, consider a variable ‘n’ which should lie within the limit of the angle which is (60-

120). When ‘d’ is smaller than ‘p’ the affinity of inner tire angle is calculated using equation (6). 
 

𝐴(𝑎𝑡ℎ𝑒 ) = 𝑥 ∗ ቀ
஽

௘
ቁ        (6) 

Otherwise, it will be calculated using equation (7). 
 

𝐴(𝑎) = 𝑥       (7) 
 

Break: 
The affinity function for a break is zero, and one. 
Difference (d) = 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑟𝑒𝑎𝑘 − 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦   (8) 
When the difference is not equal to zero it will be set as 25. In case, the difference match the 

required break then it will be zero. 
Time to avoidance (TTA) 
Difference (d)= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝑇𝐴 − 𝑇𝑇𝐴 𝑖𝑛 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦     (9) 
Consider a variable ‘t’ whose value can be any number within the limit (20-90). When the 

value of ‘d’ is smaller than ‘t’, the affinity will be calculated as follows. 

𝐴(𝑇𝑇𝐴) = 𝑥 ∗ ቀ
஽

௧
ቁ     (10) 
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 Otherwise, it will be calculated as follows: 
𝐴(𝑇𝑇𝐴) = x          (11) 
The value of x is 25 which represents the weight for the antibody. 
Total Affinity 
The total affinity is calculated by using equation (12): 
[100 − [𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑠𝑝𝑒𝑒𝑑] + 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑏𝑟𝑒𝑎𝑘] + 𝐴𝑓𝑓𝑖𝑒𝑛𝑖𝑡𝑦 [𝐴𝑛𝑔𝑙𝑒] + 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦[𝑇𝑇𝐴]]]]        
 
(12) 

  
5. CSA for Collision Avoidance   
As discussed earlier, we use CSA to get optimized actions to avoid collision. The CSA is 

based on the immune system and it describes how the immune system responds to the antigen 
(Burnet 1959).  

Algorithm 1: Action Optimization 
Set random values of Vehicle Distances front, rear, lef, and right (to 
generate real-life scenario). 
 
          IF (VehicalDis_front> VehicalDis_rear) 
                Vehical_Speed=Vechical_Speed + 20. 
                Vehical_Break=0. 
          Else 
        
               IF (VehicalDis_rear>20) 
                  Vehical_Break= 1. 
                  Vehical_Speed=Vechical_Speed - 20. 
              Else 
               Vehical_Speed=Vechical_Speed - 10. 
               Vehical_Break=0; 
            
         IF (VehicalDis_left> VehicalDis_right) 
            Vehical_Angle= Vehical_Angle + 20. 
             Vehical_tta= Vehical_tta+10. 
         Else 
            Vehical_Angle= Vehical_Angle - 20. 
            Vehical_tta= Vehical_tta - 10.} 
 
 Randomly initiate population of antibodies. 
 Calculate Affinity of each element of population. 
 Select elements with High Affinity. 
 Perform cloning by generating copies of these. 
 Mutate all copies. 
 Add mutated individual to the population and reselect from mutating. 
 Repeat step 20 to 25 until termination criteria meet. 

 
6. The UML Design of Simulations: 
This section covers the UML design of our simulations. First use case diagram is shown in 

figure 5. It consists of five use cases. In the first use case, the agent initiates perception to interpret 
the environment. After integrating the current scenario, it searches the best action from the search 
space. While in the last use case, the agent forwards the optimized actions to a motor module. 
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Figure 5. Use case diagram of simulation 

 
A sequence diagram is shown in figure 6 which represents the actions that are performed in 

sequence. It has six modules named as sensors, goal-based AV, action selector, optimizer, controller 
and motor. 

 
Figure 6. Sequence diagram of simulation 

 
7. Simulations and Results 
This section provides a detailed discussion of the simulations and their results. However, 

first we discuss the simulation environment. We have performed our simulations in C# with a 
different type of road congestion. After the simulation design, we discuss the simulation parameters. 
These parameters represent the cell structure of antibodies with their ranges. At the end of this 
section, we provide the test case design of our methodology.  

 

7.1. Simulation Environment  
Our scheme is implemented in C# .net platform as shown in figure 7.  Three different types 

of congestion rates are presented as low, average and high congestion. The number of vehicles 
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varies on different congestion rates. After selecting the congestion rate, the simulator runs CSA and 
GA against ideal discussion. The simulator gives an optimized result computed from CSA and GA. 
It also computes the computation time taken by CSA and GA. 

 

 
Figure 7. Simulation interface 

 

7.2. Simulation Parameters 
Our simulation is designed for motorway traffic. The antibodies in our research are divided 

into four cells where each cell has a different set of values. The decision making depends on the 
values of these cells. For simplicity, we assign the break value 0 and 1. The value zero means 
deceleration and 1 means acceleration. 
 

Table 1. Structure of antibody 
Series Cells Range 
1 Speed 60-120 

2 Angle 60-120 

3 Break 0-1 

4 Time To Avoidance (TTA) 20_90% 
 

7.3. Test Case Design: 
We design the test cases for three types of congestions on the road. These congestions are 

names as low, average and high congestion. The number of cars varies with different congestion 
rates. For each scenario, we have performed 100 tests resulting in  600 tests in total. We apply CSA 
and GA and compare their performance to check which algorithms performs the best. 

 

7.4. Results 
As discussed earlier, 100 test cases are designed for low, average and high congestion. To 

check the performance of CSA, several scenarios are generated.  These test cases  run at different 
speeds as shown in table 2. A number of ideal decisions are given to the simulator and the simulator 
optimized them using the CSA. In table 2, ideal decisions are given for low congestion. 
 

Table 2. Ideal decision in low congestion 
Ideal test cases 

 SPEED (Km/h)  BREAK ANGLE TTA 

1 96 1 96 72 

2 87 1 86 67 

3 135 0 121 88 

4 128 0 133 67 
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5 96 1 131 83 

6 84 1 97 72 

7 84 1 131 83 

8 90 1 129 97 

9 126 0 134 90 

10 84 1 82 61 

 
Table 3. Optimized result by CSA in low congestion 

 CSA optimized result 

  SPEED (Km/h) BREAK ANGLE TTA 

1 81  ± 17 1  ± 0 91  ± 18  62  ± 21 

2 86  ± 16 1  ± 0 80  ± 18  55  ± 22 

3 89  ±   15 0  ±  0 81  ±  18 54  ±  17 

4 99 ±  11 0  ±  0 88  ±  14 40  ±  25 

5 94  ±  16 1  ±  0 81  ±  23 52  ±  16 

6 94 ± 16 1 ± 0 86 ± 21 59 ± 29 

7 87 ± 16 1 ± 0 96 ± 18 55 ± 17 

8 83  ±   14 1 ± 0 9 4  ± 16 48  ±  19 

9 88  ±  16 0 ± 0 93  ±  17 56  ±  14 

10 88  ±  16 1 ± 0 88  ±  23 52  ±  23 

 
Table 3 shows the optimized result of CSA in case of low congestion. The test case was 

performed at a maximum speed of 135 and a minimum of 84. Results in table 3 validate the 
functionality of CSA by giving maximum variation in speed of 17 and minimum of 14, maximum 
variation in angle is 23 and the minimum variation is 14, maximum variation is 29 and the 
minimum variation is 14 in TTA. Further, table 4 provides the ideal decision for average 
congestion.  
 

Table 4. Ideal decision in average congestion 
Ideal test cases 

 SPEED (Km/h) BREAK ANGLE TTA 

1 89 0 65 28 

2 71 1 119 43 

3 77 0 101 68 

4 72 1 118 72 

5 83 0 65 52 

6 106 0 68 61 

7 89 0 69 63 

8 77 1 64 62 

9 62 1 75 34 

10 109 0 108 43 

 
Table 5. Optimized result by CSA in average congestion 

  SPEED (Km/h) BREAK ANGLE TTA 

1 9.1 ± 8.1  0 ± 0 67.2  ± 6.1 28.1 ± 4.17 

2 71.1 ± 6.0  1 ± 0 115   ±  8.15 41.2  ± 9  

3 76.3  ±  4.52 0  ±  0 90.1  ±  5.91 67.5  ±  3.86 

4 74.3 ±  5.56 1 ±  0 111.2 ±  6.64 73.5 ±  9.22 
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5 82.3 ±  6.6 0 ±  0 65.8 ±  3.7 51  ±  7.1 

6 103 ±  4 0 ±  0 65 ±  3.4 63.6 ± 4.7 

7 90.2 ±  6.4 0 ± 0  68± 8 64.9 ±  4.6 

8 77.8 ±  5.8 1 ±  0 67.7 ±  5.35 65.1 ±  8.7 

9 63.8 ±  4.89 1 ±  0 73.3 ±  6.4 32.1 ±  9 

10 106.6 ±  5.3 0 ± 0 110 ±  5.72 41.9 ±  5.7 

 
Table 5 shows the optimized results of CSA in case of average congestion. The test case was 

performed at the maximum speed of 109 and a minimum of 62. Results in table 5 validate the 
functionality of CSA by giving maximum variation in speed of 8 and a minimum of 4, maximum 
variation in angle is 8.15 while the minimum variation 3.4, maximum variation 9.22 and the 
minimum variation 4.1 in TTA.  

 
Table 6. Ideal decision in high congestion 

. Ideal test cases 

 SPEED (Km/h) BREAK ANGLE TTA 

1 57 0 87 41 

2 44 1 53 15 

3 83 0 90 30 

4 57 0 94 33 

5 99 0 84 35 

6 96 0 87 47 

7 99 0 82 43 

8 63 0 94 43 

9 84 0 81 45 

10 89 0 86 30 

 
Table 7.  Optimized result by CSA in high congestion 

 CSA optimized result 
  SPEED (Km/h) BREAK ANGLE TTA 
1 62.5   ± 3.5 0  ± 0 87  ± 7.8 40.1  ±  6.5 
2 60  ± 13 1  ± 0 66.5 ±  3.5  24.5 ±  6.5 
3 83.9  ±  17 0  ± 0 62.5  ± 11.6 53 ± 13 
4 90   ±14 0  ± 0 81.8 ±  14 51.8  ±  20 
5 89  ± 17 0  ± 0 41  ± 16 51.6  ± 27 
6 83  ± 18 0  ± 0 81.7  ±  11 53.5  ± 26 
7 90.9   ±13 0  ± 0 83.3 ±  15 55.7 ±  18 
8 89 ±  14 0  ± 0 49.9  ±  14 47  ± 4 
9 99  ±19 0  ± 0 87   ±20 44.5  ± 18.5 
10 87.4  ±21 0  ± 0 82.6  ± 29 12  ± .6 

 
Table 7 shows the optimized result of CSA in case of high congestion. Test cases were 

performed at a maximum speed of 99 and a minimum of 44. Results in table 7 validate the 
functionality of CSA by giving maximum variation in speed of 21 and a minimum of 3.5, maximum 
variation in angle is 7.8 and minimum 3.5, maximum 27 and minimum 0.6 in TTA. 

In order to check the computational time of CSA, we run both CSA and GA on core i3 
processor with 4GB RAM as shown in table 8. We have observed that the CSA takes average 
maximum time of 28.9 millisecond and minimum average time 14.3 milliseconds. However, GA 
takes maximum average time of 85.5 millisecond and minimum average time 71.4 in case of low 
congestion. In case of average congestion, CSA takes a maximum of 15.4 and a minimum of 13 
milliseconds for computation. While, GA takes a maximum of 72.2 ms and minimum 
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computational time of 65.4ms. On the other hand, CSA takes a maximum of 18.4ms for providing 
an optimized decision for collision avoidance. GA takes a maximum of 82.6ms and a minimum of 
55.4ms for providing an optimal decision in high congestion. 

 
Table 8. The computational time of CSA and GA in low, average and high congestion. 

Low Congestion Average Congestion High Congestion 
 Time in millisecond 

Test case  CSA GA 

1 28.9 77.9 

2 16.8 75.2 

3 15.1 78.3 

4 14.7 71.4 

5 14.3 71.4 

6 14.3 77.8 

7 17.4 76.8 

8 16.8 85.3 

9 21.7 83.7 

10 16.4 72 

 

 Time in ms 

Test 
case  

CSA GA 

1 15.4 65.8 

2 13.1 64.6 

3 13.7 65.4 

4 12.9 69.8 

5 13.4 72.2 

6 13 67.8 

7 13.3 67 

8 13.1 69.4 

9 13.1 66.5 

10 13.2 65.9 

 

 Time in ms 

 
Test 
case  

 
CSA 

 
GA 

 
1 

 
18.4 

 
82.6 

2 14.8 74.7 

3 13 56.5 

4 12.6 54.9 

5 12.5 54.9 

6 12.4 54.9 

7 12.3 56.4 

8 14.8 55.7 

9 12.7 54.5 

10 12.2 55.4 

 

 

 
Figure 8. Comparing CSA and GA in low congestion 
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Figure 9. Comparing CSA and GA in average congestion 

 

 
Figure 10. Comparing CSA and GA in high congestion 

 
Thus, the computational time of CSA is less than the computational time of GA as shown in 

the figures 8-10. Hence, CSA performs better than GA in terms of computational time.  
Now, we check whether CSA avoids accident within required TTA.  As shown in table 8, 9 

and 10 CSA finds an optimized solution within the required TTA. GA fails to provide a solution in 
the required TTA.  GA provides a better solution than CSA but it fails to provide it with the 
required TTA time. Thus, an accident can occur.  The CSA is better than GA in terms of 
computational time. 

Table 9. Comparing GA and CSA in term of TTA for Low congestion 

Test 
case  

Required TTA (ms) CSA GA   

1 72 28.9 Avoided 77.9 Not avoided 
2 67 16.8 Avoided 75.2 Not avoided 
3 88 15.1 Avoided 78.3 Not avoided 
4 67 14.7 Avoided 71.4 Not avoided 
5 83 14.3 Avoided 71.4 Avoided 
6 72 14.3 Avoided 77.8 Not avoided 
7 83 17.4 Avoided 76.8 Avoided 
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8 97 16.8 Avoided 85.3 Avoided 
9 90 21.7 Avoided 83.7 Avoided 
10 61 16.4 Avoided 72 Not avoided 

Table 10. Comparing GA and CSA in term of TTA for average congestion 

Test case  Required TTA (ms) CSA GA   
1 28 15.4 Avoided 65.8 Not avoided 
2 43 13.1 Avoided 64.6 Not avoided 
3 68 13.7 Avoided 65.4 Not avoided 
4 72 12.9 Avoided 69.8 Not avoided 
5 52 13.4 Avoided 72.2 Not avoided 
6 61 13 Avoided 67.8 Not avoided 
7 63 13.3 Avoided 69.4 Not avoided 
8 62 13.1 Avoided 69.4 Not avoided 
9 34 13.1 Avoided 66.5 Not avoided 
10 43 13.2 Avoided 65.9 Not avoided 

Table 11. Comparing GA and CSA in term of TTA for High congestion 

Test case  Required TTA (ms) CSA GA   
1 41 18.4 Avoided 82.6 Not avoided 
2 15 14.8 Avoided 74.7 Not avoided 
3 30 13 Avoided 56.5 Not avoided 
4 33 12.6 Avoided 54.9 Not avoided 
5 35 12.5 Avoided 54.9 Not avoided 
6 47 12.4 Avoided 54.9 Not avoided 
7 43 12.3 Avoided 56.4 Not avoided 
8 43 14.8 Avoided 55.7 Not avoided 
9 45 12.7 Avoided 54.5 Not avoided 
10 30 12.2 Avoided 55.4 Not avoided 

 
In the aforementioned discussion, we have examined the performance of CSA and GA. 

From the results, we conclude that the clonal selection algorithm is less robust than GA. By 
comparison, it is clear that the standard deviation of CSA is higher than the standard deviation of 
GA.  But CSA beat GA in computation time.  We have only examined CSA with GA, because to 
the best of our knowledge, CI-based algorithms have not been employed for collision avoidance in a 
land vehicle. There may be a possibility that other CI-based algorithms will perform better than GA 
or we can also create a hybrid algorithm which can combine the best features of CI-based 
algorithms to timely avoid collision with better-optimized results. In the future, we will extend our 
research work by hard wiring the CSA to check its performance in the real life. We also explore 
other CI-based algorithms and try to negotiate why their application has not been done for collision 
avoidance in the land vehicles.  
 

8. Conclusion 
From an extensive literature review of computational intelligence CI, we found that very 

few researchers use CI-based algorithm for land autonomous vehicles. We have implemented CI 
based clonal selection algorithm with a CABC framework for collision avoidance in the AVs. We 
have implemented CSA and GA in different types of congestions. To validate the performance of 
CSA it is compared with GA.  GA provides better results than CSA. However, the computation 
time of CSA is less than the GA. Moreover, CSA performed better results than GA in terms of TTA 
because CSA has producesd optimal results with the required TTA. Whereas, GA failed to provide 
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optimal results within the required TTA. Thus, we conclude that CSA provides the required action 
with TTA and avoids a collsion. 
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