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Abstract 

This article presents the ultimate in resolving a pricing framework's multi-Heston. Basically, 

we use the theorem Carr-Bakshi-Madan and a characteristic function method. In this first part, we 

integrate solutions of Riccati equations.  
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1. Introduction 

As an extension of Black-Scholes  model (Black & Scholes, 1973), Steven and Heston 

(1993) define a new model with a stochastic volatility. This model was extent by Christoffersen, 

Heston and Jacobs (2009) as a model with two stochastic semi-volatilities. In our opinion, this 

model can be generalized as a stochastic model with q (q>0) stochastic partial-(or semi-) 

volatilities, see equation (1): 

 

dS = µiS dt + 
 qj ,1

vj
0,5

S dWj 

dvj = θj (ωj – vj) dt + ξj vj
0,5

 dBj, j=1,q,   (1) 

 

where: 

1. ωj is long term j-th partial-volatility, j=1,q; 

2. θj return factor to mean of j-th partial-volatility, j=1,q; 

3. ξj volatility of j-th volatility, j=1,q; 

4. Bj and Wj are Wiener standard processes correlated (δij is Kronecker symbol): 

 

dWj dBj= ρj δij, j=1,q, i=1,q ;   (2) 

 

5. S is a stochastic process for a traded asset; 

6. vj is j-th partial-volatility, j=1,q. 

 

This paper is based on a draft (Socaciu, 2015). All of proofs can be obtained in extended form there. 

 

2. Riccati equations integration 

Lemma R1. For next linear ODE: 

 

dZ(x) / dx = A Z(x) + B,   (3) 

 

where A and B are constants, solution is: 

 

Z = – B A
-1

 + K exp(Ax),   (4) 

 

where K is an integration constant. 

 

Proof. Multiply ODE with exp(–Ax). 
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Lemma R2. For Riccati ODE: 

 

dZ(x) / dx = a Z
2
(x) + b Z(x) + c,   (5) 

 

where Z is nonnegative and: 

 

Z(0) = 0,   (6) 

 

with a, b and c constants, we have: 

 

Z = 0,5 [b ± D] [E – 1] [1 – G E]
-1 

a
-1

,   (7) 

 

where: 

 

D = [b
2 

+ 4 a c]
0,5

   (8), 

G = – [b ± D] [– b ± D]
-1

,   (9) 

E = exp(– ± D x).   (10) 

 

Proof. After changing: 

 

Y = (Z – z)
-
,
1    

(11) 

 

ODE becomes: 

 

–Y’ Y
-2

 = a [z
2 
+ 2 z Y

-1
 + Y

-2
] + b [z + Y

-1
] + c,   (12) 

 

or: 

 

Y’ = – [a z
2
 + b z + c] Y

2
 – [b + 2 a z] Y – a.   (13) 

 

If: 

 

z = 0,5 [– b ± D] a
-1

,  (14) 

 

then: 

 

a z
2
 + b z +c = 0,   (15) 

 

and Riccati ODE becomes: 

 

Y’ = – ± D Y – a.   (16) 

 

and now apply Lemma R1: 

 

Z(x) = 0,5 [– b ± D] a
-1

 – [± a D
-1

 – K E]
-1

,   (17) 

 

Because: 

 

Z(0) = 0 = 0,5 [– b ± D] a
-1

 – [± a D
-1

 – K]
-1

,   (18) 

 

then: 
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Z = 0,5 [b ± D] [E – 1] [1 – G E]
-1 

a
-1

.   (19) 

 

Observation. The two solutions of Riccati ODE are identical. 

 

Proof: Let: 

 

E+ = exp(– D t),   (20) 

G+ = – [b + D] [– b + D]
-1

,   (21) 

E– = exp(+ D t) = 1 / E+,   (22) 

G– = – [b – D] [– b – D]
-1

,   (23) 

 

then solutions are: 

 

Z1 = 0,5 [b + D] [E+ – 1] [1 – G+ E+]
-1 

a
-1 

= 0,5 [b + D] [E+ – 1] [1 + [b + D] [– b + D]
-1 

E+]
-1 

a
-1

 

= 0,5 [b + D] [E+ – 1] [– b + D] [[– b + D] + [b + D] E+]
-1 

a
-1   

(24) 

 

and: 

 

Z2 = 0,5 [b – D] [E– – 1] [1 – E–/e]
-1

a
-1 

= 0,5 [b – D] [E+
-1

 – 1] [1 – [b – D] [– b – D]
-1 

E+
-1

]
-1 

a
-1

 

= 0,5 [b – D] [1 – E+] E+
-1

[– b – D] [[– b – D] – [b – D] E+
-1

]
-1 

a
-1

 

= 0,5 [b – D] [1 – E+] [–b – D] [[–b – D] E+ – [b – D]
-1 

a
-1

,   (25) 

 

3. Integration of Riccati solutions 

Corollary R3. Riccati equation: 

 

dB / dt = 0,5 σ
2 

B
2
 – (b – i k ρ σ) B – 0,5 k (k + i),   (26) 

 

with initial condition: 

 

B(0) = 0,   (27) 

 

has solutions: 

 

B(t) = S [1 – E] [1 – G E]
-1

,   (28) 

 

where: 

 

S = [b – i k ρ σ – D] σ
-2

,
   
(29) 

D = [(b – i k ρ σ)
2 

+ σ
2 

k (k + i)]
0,5

,
   

(30) 

G = [b – i k ρ σ – D] [b – i k ρ σ + D]
-1

,   (31) 

E = exp(– D t).   (32) 

 

Proof: In Lemma R2 let: 

 

Z ← B,   (33) 

x ← t,   (34) 

b ← – [b – i k ρ σ],   (35) 

c ← –0,5 k (k + i),   (36) 
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a ← 0,5 σ
2
,  

 
(37)

 

 

Lemma R4. If B is solution of Riccati equation: 

 

dB / dt = 0,5 σ
2 

B
2
 – (b – i k ρ σ) B – 0,5 k (k + i),   (38) 

 

with initial condition: 

 

B(0) = 0,   (39) 

 

then: 

 

∫ B(t) dt = S [t + (G – 1) G
-1 

D
-1

 log(1 – G E) + K],   (40) 

 

where K ia a constant and: 

 

S = [b – i k ρ σ –D] σ
-2

,   
 
(41) 

D = [(b – i k ρ σ)
2 

+ σ
2 

k (k + i)]
0,5

,   (42) 

 G = [b – i k ρ σ – D] [b – i k ρ σ + D]
-1

,   (43) 

E = exp(– D t).   (44) 

 

Proof. With notation from Lemma R3, will have: 

 

∫ B(t) dt = ∫ S [1 – E] [1 – G E]
-1

 dt = S ∫ [1 – E] [1 – G E]
-1

 dt 

= S ∫ [(1 – G E) + (G – 1) E] [1 – G E]
-1

 dt = S ∫ [1 + [(G – 1) E] [1 – G E]
-1

] dt 

= S [t + (G – 1) G
-1 

D
-1

 ∫ G D E [1 – G E]
-1

 dt] = S [t + (G – 1) G
-1 

D
-1

 log(1 – G E) + K].   (45) 

 

Corollary R5. If Bj, j=1,m, are solutions of equations: 

 

dBj / dt = 0,5 σj
2 

Bj
2
 – (bj – i k ρj σj) Bj – 0,5 k (k + i), j=1,m,   (46) 

 

with initial conditions: 

 

Bj(0) = 0, j=1,m,   (47) 

 

then next ODE: 

 

dA / dt = 
 mj ,1

bj θj Bj   (48) 

 

with initial condition: 

 

A(0) = 0   (49) 

 

will be: 

 

A(t) = 
 mj ,1

bj θj [Sj t – 2 σj
-2

 log((1 – Gj Ej) / (1 – Gj))],   (50) 

 

where: 
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Dj = ((bj – i k ρj σj)
2 

+ σj
2 
k (k + i))

0,5
, j=1,m,   (51) 

Ej = exp(– Dj t), j=1,m,   (52) 

Sj = [bj – i k ρj σj –Dj] σj
-2

, j=1,m,   (53) 

Gj = [bj – i k ρj σj –Dj] [bj – i k ρj σj + Dj]
-1

, j=1,m.   (54) 

 

Proof. Apply Lemma R4 and will obtain: 

 

A = ∫ 
 mj ,1

bj θj Bj dt = 
 mj ,1

bj θj ∫ Bj dt 

= 
 mj ,1

bj θj Sj [t + (Gj – 1) Gj
-1 

Dj
-1

 log(1 – Gj Ej) + Kj] + K.   (55) 

 

Now, from initial condition for A(0) obtain: 

 

0 = 
 mj ,1

bj θj Sj [(Gj – 1) Gj
-1 

Dj
-1

 log(1 – Gj) + Kj] + K ,   (56) 

 

wherefrom will obtain integration constant K as: 

 

K = – 
 mj ,1

bj θj Sj [(Gj – 1) Gj
-1 

Dj
-1

 log(1 – Gj) + Kj].   (57) 

 

Return to solution with replacing K: 

 

A = 
 mj ,1

bj θj Sj [t + (Gj – 1) Gj
-1 

Dj
-1

 log(1 – Gj Ej) + Kj] 

– 
 mj ,1

bj θj Sj [(Gj – 1) Gj
-1

Dj
-1

 log(1–Gj) + Kj] = 
 mj ,1

bj θj Sj [t + (Gj – 1) Gj
-1 

Dj
-1

 log(1–Gj Ej) 

+ Kj – (Gj – 1) Gj
-1 

Dj
-1

 log (1 – Gj) – Kj] 

= 
 mj ,1

bj θj [Sj t + Sj (Gj – 1) Gj
-1 

Dj
-1

 log((1 – Gj Ej) / (1 – Gj))],   (58) 

 

Because: 

 

Sj (Gj – 1) Gj
-1 

Dj
-1

 = [bj – i k ρj σj – Dj] σj
-2

{[bj – i k ρj σj – Dj] [bj – i k ρj σj + Dj]
-1

 

– 1} [bj – i k ρj σj – Dj]
-1 

[bj – i k ρj σj + Dj] Dj
-1

 = σj
-2

{[bj – i k ρj σj – Dj] [bj – i k ρj σj + Dj]
-1

 

– 1} [bj – i k ρj σj + Dj] Dj
-1

 = σj
-2 

{[bj – i k ρj σj – Dj] [bj – i k ρj σj + Dj]
-1 

[bj – i k ρj σj + Dj] 

– [bj – i k ρj σj + Dj]} Dj
-1

 = σj
-2 

{[bj – i k ρj σj – Dj] – [bj – i k ρj σj + Dj]} Dj
-1

 

= σj
-2 

[–2 Dj] Dj
-1

 = –2 σj
-2

,   (59) 

 

then: 

 

A = 
 mj ,1

bj θj [Sj t – 2 σj
-2

 log((1 – Gj Ej) / (1 – Gj))].   (60) 

 

 

4. Next steps 

Next step is to build characteristic function (Christoffersen, Heston & Jacobs, 2009) based 

on affine form of  process. Identifying of constants in affine form in part of characteristic function 

will be an appeal at our results in 3rd paragraph. After obtaining characteristic functions, using 
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Carr-Bakshi-Medan theorem we can build an analytic solution for european call pricing problem in 

multi-Heston model. 
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