Efficient Filtering of Noisy Fingerprint Images

Maria Liliana Costin

Abstract


Fingerprint identification is an important field in the wide domain of biometrics with many applications, in different areas such: judicial, mobile phones, access systems, airports. There are many elaborated algorithms for fingerprint identification, but none of them can guarantee that the results of identification are always 100 % accurate. A first step in a fingerprint image analysing process consists in the pre-processing or filtering. If the result after this step is not by a good quality the upcoming identification process can fail. A major difficulty can appear in case of fingerprint identification if the images that should be identified from a fingerprint image database are noisy with different type of noise. The objectives of the paper are: the successful completion of the noisy digital image filtering, a novel more robust algorithm of identifying the best filtering algorithm and the classification and ranking of the images. The choice about the best filtered images of a set of 9 algorithms is made with a dual method of fuzzy and aggregation model. We are proposing through this paper a set of 9 filters with different novelty designed for processing the digital images using the following methods: quartiles, medians, average, thresholds and histogram equalization, applied all over the image or locally on small areas. Finally the statistics reveal the classification and ranking of the best algorithms.


Keywords


fingerprint image, image noise, statistical analysis, fuzzy selection, classification

Full Text:

PDF


(C) 2010-2022 EduSoft